|
import torch |
|
import torch.nn as nn |
|
from typing import Any, Dict, List, Optional, Union, Tuple |
|
|
|
from accelerate.utils import set_module_tensor_to_device |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.normalization import AdaLayerNormContinuous |
|
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed |
|
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel, FluxTransformerBlock, FluxSingleTransformerBlock |
|
|
|
from diffusers.configuration_utils import register_to_config |
|
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CustomFluxTransformer2DModel(FluxTransformer2DModel): |
|
""" |
|
The Transformer model introduced in Flux. |
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ |
|
|
|
Parameters: |
|
patch_size (`int`): Patch size to turn the input data into small patches. |
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. |
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. |
|
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. |
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. |
|
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. |
|
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 1, |
|
in_channels: int = 64, |
|
num_layers: int = 19, |
|
num_single_layers: int = 38, |
|
attention_head_dim: int = 128, |
|
num_attention_heads: int = 24, |
|
joint_attention_dim: int = 4096, |
|
pooled_projection_dim: int = 768, |
|
guidance_embeds: bool = False, |
|
axes_dims_rope: Tuple[int] = (16, 56, 56), |
|
max_layer_num: int = 10, |
|
): |
|
super(FluxTransformer2DModel, self).__init__() |
|
self.out_channels = in_channels |
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim |
|
|
|
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) |
|
|
|
text_time_guidance_cls = ( |
|
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings |
|
) |
|
self.time_text_embed = text_time_guidance_cls( |
|
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim |
|
) |
|
|
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) |
|
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
attention_head_dim=self.config.attention_head_dim, |
|
) |
|
for i in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
self.single_transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxSingleTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
attention_head_dim=self.config.attention_head_dim, |
|
) |
|
for i in range(self.config.num_single_layers) |
|
] |
|
) |
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.max_layer_num = max_layer_num |
|
|
|
|
|
self.layer_pe = nn.Parameter(torch.empty(1, self.max_layer_num, 1, 1, self.inner_dim)) |
|
nn.init.trunc_normal_(self.layer_pe, mean=0.0, std=0.02, a=-2.0, b=2.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwarg): |
|
model = super().from_pretrained(*args, **kwarg) |
|
for name, para in model.named_parameters(): |
|
if name != 'layer_pe': |
|
device = para.device |
|
break |
|
model.layer_pe.to(device) |
|
return model |
|
|
|
def crop_each_layer(self, hidden_states, list_layer_box): |
|
""" |
|
hidden_states: [1, n_layers, h, w, inner_dim] |
|
list_layer_box: List, length=n_layers, each element is a Tuple of 4 elements (x1, y1, x2, y2) |
|
""" |
|
token_list = [] |
|
for layer_idx in range(hidden_states.shape[1]): |
|
if list_layer_box[layer_idx] == None: |
|
continue |
|
else: |
|
x1, y1, x2, y2 = list_layer_box[layer_idx] |
|
x1, y1, x2, y2 = x1 // 16, y1 // 16, x2 // 16, y2 // 16 |
|
layer_token = hidden_states[:, layer_idx, y1:y2, x1:x2, :] |
|
bs, h, w, c = layer_token.shape |
|
layer_token = layer_token.reshape(bs, -1, c) |
|
token_list.append(layer_token) |
|
result = torch.cat(token_list, dim=1) |
|
return result |
|
|
|
def fill_in_processed_tokens(self, hidden_states, full_hidden_states, list_layer_box): |
|
""" |
|
hidden_states: [1, h1xw1 + h2xw2 + ... + hlxwl , inner_dim] |
|
full_hidden_states: [1, n_layers, h, w, inner_dim] |
|
list_layer_box: List, length=n_layers, each element is a Tuple of 4 elements (x1, y1, x2, y2) |
|
""" |
|
used_token_len = 0 |
|
bs = hidden_states.shape[0] |
|
for layer_idx in range(full_hidden_states.shape[1]): |
|
if list_layer_box[layer_idx] == None: |
|
continue |
|
else: |
|
x1, y1, x2, y2 = list_layer_box[layer_idx] |
|
x1, y1, x2, y2 = x1 // 16, y1 // 16, x2 // 16, y2 // 16 |
|
full_hidden_states[:, layer_idx, y1:y2, x1:x2, :] = hidden_states[:, used_token_len: used_token_len + (y2-y1) * (x2-x1), :].reshape(bs, y2-y1, x2-x1, -1) |
|
used_token_len = used_token_len + (y2-y1) * (x2-x1) |
|
return full_hidden_states |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
list_layer_box: List[Tuple] = None, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: |
|
""" |
|
The [`FluxTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
Input `hidden_states`. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): |
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
|
from the embeddings of input conditions. |
|
timestep ( `torch.LongTensor`): |
|
Used to indicate denoising step. |
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`): |
|
A list of tensors that if specified are added to the residuals of transformer blocks. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
bs, n_layers, channel_latent, height, width = hidden_states.shape |
|
|
|
hidden_states = hidden_states.view(bs, n_layers, channel_latent, height // 2, 2, width // 2, 2) |
|
hidden_states = hidden_states.permute(0, 1, 3, 5, 2, 4, 6) |
|
hidden_states = hidden_states.reshape(bs, n_layers, height // 2, width // 2, channel_latent * 4) |
|
hidden_states = self.x_embedder(hidden_states) |
|
|
|
full_hidden_states = torch.zeros_like(hidden_states) |
|
layer_pe = self.layer_pe.view(1, self.max_layer_num, 1, 1, self.inner_dim) |
|
hidden_states = hidden_states + layer_pe[:, :n_layers] |
|
hidden_states = self.crop_each_layer(hidden_states, list_layer_box) |
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
else: |
|
guidance = None |
|
temb = ( |
|
self.time_text_embed(timestep, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if txt_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
img_ids = img_ids[0] |
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
image_rotary_emb = self.pos_embed(ids) |
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
|
|
hidden_states = self.fill_in_processed_tokens(hidden_states, full_hidden_states, list_layer_box) |
|
hidden_states = hidden_states.view(bs, -1, self.inner_dim) |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states.view(bs, n_layers, height//2, width//2, channel_latent, 2, 2) |
|
hidden_states = hidden_states.permute(0, 1, 4, 2, 5, 3, 6) |
|
output = hidden_states.reshape(bs, n_layers, channel_latent, height, width) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |