Spaces:
Sleeping
Sleeping
File size: 16,811 Bytes
ff7bcc1 58796c7 ff7bcc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import numpy as np, pandas as pd, warnings, time, uuid
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression
from sklearn.base import BaseEstimator, ClassifierMixin
import xgboost as xgb
import shap
# -------------------- CONFIG --------------------
DATA_PATH = "/app/data/final_report.csv" # <— assicurati che il file esista nel container!
FEATURE_MAP = {
"Debitore_cluster": "Debitore_cluster",
"Stato_Giudizio": "Stato_Giudizio",
"Cedente": "Cedente",
"Importo.iniziale.outstanding": "Importo iniziale outstanding",
"Decreto.sospeso": "Decreto sospeso",
"Notifica.Decreto": "Notifica Decreto",
"Opposizione.al.decreto.ingiuntivo": "Opposizione al decreto ingiuntivo",
"Ricorso.al.TAR": "Ricorso al TAR",
"Sentenza.TAR": "Sentenza TAR",
"Atto.di.Precetto": "Atto di Precetto",
"Decreto.Ingiuntivo": "Decreto Ingiuntivo",
"Sentenza.giudizio.opposizione": "Sentenza giudizio opposizione",
"giorni_da_iscrizione": "giorni_da_iscrizione",
"giorni_da_cessione": "giorni_da_cessione",
"Zona": "Zona"
}
LABELS = ["quasi_nulla","bassa","media","alta"]
BINS = [0, 11, 30, 70, 100]
MIDPOINTS = np.array([5.5, 20.5, 50.0, 85.0])
MONTH_BINS_DAYS = np.array([0, 30, 60, 90, 180, 360, 720, 1e9], dtype=float)
MONTH_LABELS = ["<1m","1–2m","2–3m","3–6m","6–12m","12–24m",">=24m"]
IMPORTO_BINS = [0.0,1_000.0,10_000.0,50_000.0,100_000.0,500_000.0,1_000_000.0,2_000_000.0]
IMPORTO_LABELS = ["<1k","1–10k","10–50k","50–100k","100–500k","500k–1M",">=1M"]
RANDOM_STATE = 42
P100_THR_AUTO = 0.71
STAGE1_LOGIT_PARAMS = dict(max_iter=500, solver='liblinear')
STAGE2_ORD_XGB_PARAMS = dict(
objective="binary:logistic", n_estimators=700, learning_rate=0.05,
max_depth=4, subsample=0.9, colsample_bytree=0.85,
min_child_weight=2.0, gamma=0.1, reg_lambda=5.0, reg_alpha=0.5,
n_jobs=-1, random_state=RANDOM_STATE, verbosity=0
)
TOP_K_TEXT = 3
MIN_ABS_SHOW = 0.01
TOP_K_ONELINER = 2
# -------------------- MODELLO ORDINATO --------------------
class OrdinalXGB(BaseEstimator, ClassifierMixin):
def __init__(self, n_classes=4, **xgb_params):
self.n_classes = n_classes
self.xgb_params = xgb_params
self.models = []
def fit(self, X, y, sample_weight=None):
self.models = []
for k in range(1, self.n_classes):
y_bin = (y >= k).astype(int)
clf = xgb.XGBClassifier(**self.xgb_params)
clf.fit(X, y_bin, sample_weight=sample_weight)
self.models.append(clf)
return self
def _cum_probs(self, X):
cps = np.vstack([clf.predict_proba(X)[:,1] for clf in self.models]).T
cps = np.clip(cps, 1e-6, 1-1e-6)
for k in range(1, cps.shape[1]): cps[:,k] = np.minimum(cps[:,k-1], cps[:,k])
return cps
def predict_proba(self, X):
cps = self._cum_probs(X); n = X.shape[0]
proba = np.zeros((n, self.n_classes))
proba[:,0] = 1 - cps[:,0]
for k in range(1, self.n_classes-1): proba[:,k] = cps[:,k-1] - cps[:,k]
proba[:,-1] = cps[:,-1]
s = proba.sum(axis=1, keepdims=True); s[s==0]=1.0
return np.clip(proba/s, 0, 1)
def mode_(s: pd.Series):
s = s.dropna()
return s.mode().iloc[0] if len(s) else np.nan
class Predictor:
def __init__(self, data_path=DATA_PATH):
t0 = time.time()
self.data_path = data_path
df = pd.read_csv(self.data_path)
inc = df['incassi_perc'].replace([np.inf,-np.inf], np.nan).fillna(100.0).clip(0,100)
df_model = df[[v for v in FEATURE_MAP.values() if v in df.columns]].copy()
df_model['incassi_perc_capped'] = inc
df_model['y100'] = (inc >= 100.0-1e-9).astype(int)
df_model['livello'] = pd.cut(np.minimum(inc, 99.999), bins=BINS, labels=LABELS, right=False, include_lowest=True)
self.num_cols, self.cat_cols = [], []
for c in FEATURE_MAP.values():
if c in df_model.columns:
(self.num_cols if pd.api.types.is_numeric_dtype(df_model[c]) else self.cat_cols).append(c)
self.params, full_oh = self.preprocess_fit(df_model)
self.feat_cols_full = [c for c in full_oh.columns if c not in ['incassi_perc_capped','y100','livello']]
self.stage1_final = LogisticRegression(**STAGE1_LOGIT_PARAMS).fit(full_oh[self.feat_cols_full], full_oh['y100'])
full_lt = full_oh[full_oh['y100']==0].copy()
y_ord_full = pd.Categorical(full_lt['livello'], categories=LABELS, ordered=True).codes
self.stage2_final = OrdinalXGB(n_classes=4, **STAGE2_ORD_XGB_PARAMS).fit(full_lt[self.feat_cols_full].values, y_ord_full)
shap.initjs()
rng = np.random.RandomState(0)
bg_idx = rng.choice(len(full_oh), size=min(200, len(full_oh)), replace=False)
bg_matrix = full_oh.iloc[bg_idx][self.feat_cols_full].values
self.explainer_st1 = shap.LinearExplainer(self.stage1_final, bg_matrix, link=shap.links.identity)
self.explainers_st2 = [shap.TreeExplainer(clf, bg_matrix, model_output="probability",
feature_perturbation="interventional")
for clf in self.stage2_final.models]
self.ORIGINAL_CAT_COLS = [c for c in self.cat_cols]
self.load_seconds = time.time()-t0
def preprocess_fit(self, train_df: pd.DataFrame):
params = {}
means = {c: train_df[c].mean(skipna=True) for c in self.num_cols}
modes = {c: mode_(train_df[c]) for c in self.cat_cols}
tr = train_df.copy()
for c in self.num_cols: tr[c] = tr[c].fillna(means[c])
for c in self.cat_cols: tr[c] = tr[c].fillna(modes[c]).astype(str)
one_level = [c for c in self.cat_cols if tr[c].nunique(dropna=True) < 2]
keep_cats = [c for c in self.cat_cols if c not in one_level]
params['removed_cats'] = one_level
params['month_bins_days'] = MONTH_BINS_DAYS.tolist()
params['month_labels'] = MONTH_LABELS
tr['iscr_month_bin'] = pd.cut(tr['giorni_da_iscrizione'], MONTH_BINS_DAYS, labels=MONTH_LABELS, right=False, include_lowest=True)
tr['cess_month_bin'] = pd.cut(tr['giorni_da_cessione'], MONTH_BINS_DAYS, labels=MONTH_LABELS, right=False, include_lowest=True)
for c in ['iscr_month_bin','cess_month_bin']:
if tr[c].nunique(dropna=True) >= 2 and c not in keep_cats:
keep_cats.append(c)
params['importo_bins'] = IMPORTO_BINS
params['importo_labels'] = IMPORTO_LABELS
tr['imp_bucket'] = pd.cut(tr['Importo iniziale outstanding'], IMPORTO_BINS, labels=IMPORTO_LABELS, right=False, include_lowest=True)
if tr['imp_bucket'].nunique(dropna=True) >= 2 and 'imp_bucket' not in keep_cats:
keep_cats.append('imp_bucket')
params['keep_cats'] = keep_cats
params['levels_map'] = {c: sorted(tr[c].astype(str).dropna().unique().tolist()) for c in keep_cats}
x_imp_log = np.log1p(tr['Importo iniziale outstanding'].clip(lower=0))
params['scale_imp'] = (x_imp_log.mean(), x_imp_log.std(ddof=0) or 1.0)
tr['x_imp_log'] = (x_imp_log - params['scale_imp'][0]) / params['scale_imp'][1]
g_iscr_log = np.log(tr['giorni_da_iscrizione'].clip(lower=1))
params['scale_iscr'] = (g_iscr_log.mean(), g_iscr_log.std(ddof=0) or 1.0)
tr['giorni_log'] = (g_iscr_log - params['scale_iscr'][0]) / params['scale_iscr'][1]
g_cess = tr['giorni_da_cessione']
params['scale_cess'] = (g_cess.mean(), g_cess.std(ddof=0) or 1.0)
tr['giorni_cessione_z'] = (g_cess - params['scale_cess'][0]) / params['scale_cess'][1]
tr = tr.drop(columns=['Importo iniziale outstanding','giorni_da_iscrizione','giorni_da_cessione'])
tr_oh = pd.get_dummies(tr, columns=keep_cats, drop_first=True, dtype=float)
params['oh_columns'] = [c for c in tr_oh.columns if c not in ['incassi_perc_capped','y100','livello']]
params['means'] = means
params['modes'] = modes
return params, tr_oh
def preprocess_apply(self, test_df: pd.DataFrame):
te = test_df.copy()
for c in self.num_cols: te[c] = te[c].fillna(self.params['means'][c])
for c in self.cat_cols: te[c] = te[c].fillna(self.params['modes'][c]).astype(str)
te = te.drop(columns=self.params['removed_cats'], errors='ignore')
te['iscr_month_bin'] = pd.cut(te['giorni_da_iscrizione'], np.array(self.params['month_bins_days'], float),
labels=self.params['month_labels'], right=False, include_lowest=True)
te['cess_month_bin'] = pd.cut(te['giorni_da_cessione'], np.array(self.params['month_bins_days'], float),
labels=self.params['month_labels'], right=False, include_lowest=True)
te['imp_bucket'] = pd.cut(te['Importo iniziale outstanding'], np.array(self.params['importo_bins'], float),
labels=self.params['importo_labels'], right=False, include_lowest=True)
x_imp_log = np.log1p(te['Importo iniziale outstanding'].clip(lower=0))
te['x_imp_log'] = (x_imp_log - self.params['scale_imp'][0]) / self.params['scale_imp'][1]
g_iscr_log = np.log(te['giorni_da_iscrizione'].clip(lower=1))
te['giorni_log'] = (g_iscr_log - self.params['scale_iscr'][0]) / self.params['scale_iscr'][1]
te['giorni_cessione_z'] = (te['giorni_da_cessione'] - self.params['scale_cess'][0]) / self.params['scale_cess'][1]
keep_cats = [c for c in self.cat_cols if c not in self.params['removed_cats']]
for c in ['iscr_month_bin','cess_month_bin','imp_bucket']:
if c not in keep_cats: keep_cats.append(c)
te = te.drop(columns=['Importo iniziale outstanding','giorni_da_iscrizione','giorni_da_cessione'])
te_oh = pd.get_dummies(te, columns=keep_cats, drop_first=True, dtype=float)
for col in self.params['oh_columns']:
if col not in te_oh.columns: te_oh[col] = 0.0
extra = [c for c in te_oh.columns if c not in self.params['oh_columns'] + ['incassi_perc_capped','y100','livello']]
if extra: te_oh = te_oh.drop(columns=extra)
target_cols_all = ['incassi_perc_capped','y100','livello']
target_cols_present = [c for c in target_cols_all if c in te_oh.columns]
te_oh = te_oh[self.params['oh_columns'] + target_cols_present]
return te_oh
def active_levels_from_raw(self, raw_row: pd.DataFrame):
out = {}
s = raw_row.iloc[0]
for c in self.ORIGINAL_CAT_COLS:
v = s.get(c, np.nan)
out[c] = self.params['levels_map'].get(c, ["(baseline)"])[0] if (pd.isna(v) or str(v).strip()=="") else str(v)
return out
def collapse_shap(self, vals_row: np.ndarray, feature_names, active_levels):
vals_s = pd.Series(vals_row, index=feature_names)
used=set(); out_vals=[]; out_names=[]
for cat, levels in self.params['levels_map'].items():
prefix=f"{cat}_"; cols=[c for c in feature_names if c.startswith(prefix)]
if not cols: continue
used.update(cols)
total=float(vals_s[cols].sum())
out_vals.append(total); out_names.append(f"{cat} = {active_levels.get(cat, levels[0] if levels else '(baseline)')}")
for c in feature_names:
if c in used or c in ["incassi_perc_capped","y100","livello"]: continue
out_vals.append(float(vals_s[c])); out_names.append(c)
out_vals=np.array(out_vals); out_names=np.array(out_names)
idx=np.argsort(-np.abs(out_vals))
return out_names[idx], out_vals[idx]
def explain_text_for_stage1(self, X_row, raw_row):
vals = self.explainer_st1.shap_values(X_row.reshape(1,-1))
vals_row = vals[0] if hasattr(vals, "__len__") else vals
return self.collapse_shap(vals_row, self.feat_cols_full, self.active_levels_from_raw(raw_row))
def explain_text_for_stage2(self, X_row, raw_row, k_thr: int):
vals = self.explainers_st2[k_thr-1].shap_values(X_row.reshape(1,-1))
vals_row = vals[0] if hasattr(vals, "__len__") else vals
return self.collapse_shap(vals_row, self.feat_cols_full, self.active_levels_from_raw(raw_row))
def summary_from_names_contrib(self, names, contrib, top_k=TOP_K_TEXT, min_abs=MIN_ABS_SHOW, include_neg=False):
pos = [(n, v) for n, v in zip(names, contrib) if v >= min_abs][:top_k]
neg = [(n, v) for n, v in zip(names, contrib) if v <= -min_abs][:top_k] if include_neg else []
def to_dict(items): return [ {"name": n, "delta_pp": float(abs(v))} for n, v in items ]
return to_dict(pos), to_dict(neg), pos, neg
def build_one_liner(self, final_class: str, stage_used: str, p100: float, yhat: float,
k_thr: int | None, pos_pairs, neg_pairs):
def short(items):
take = items[:TOP_K_ONELINER]
return ", ".join([f"{n} ({abs(v):.0%} pp)" for n, v in take]) if take else "—"
if stage_used == "stage1":
up = short([p for p in pos_pairs if p[1] > 0])
down = short([n for n in neg_pairs if n[1] < 0])
return (f"Classe **{final_class}**: p(100%)={p100:.0%}. "
f"Hanno favorito: {up}; hanno penalizzato: {down}. "
f"Valore atteso {yhat:.1f}.")
else:
up = short([p for p in pos_pairs if p[1] > 0])
down = short([n for n in neg_pairs if n[1] < 0])
return (f"Classe **{final_class}** (spiegazione su P(y≥{k_thr})): "
f"in alto {up}; in basso {down}. Valore atteso {yhat:.1f}.")
def predict_class_fast(self, payload: dict):
"""Like predict_dict ma senza SHAP: restituisce solo classe, p100, probs ordinali e valore atteso."""
raw = {k: payload.get(k, None) for k in FEATURE_MAP.values()}
df_row_raw = pd.DataFrame([raw])
te_oh = self.preprocess_apply(df_row_raw)
X_df = te_oh.reindex(columns=self.feat_cols_full, fill_value=0.0)
X = X_df.values
p100 = float(self.stage1_final.predict_proba(X)[:,1][0])
prob_ord = self.stage2_final.predict_proba(X)[0]
prob_ord = prob_ord / (prob_ord.sum() or 1.0)
yhat = 100.0*p100 + (1.0-p100)*float((prob_ord @ MIDPOINTS))
if p100 >= P100_THR_AUTO:
final_class = "100%"
else:
k = int(np.argmax(prob_ord))
final_class = LABELS[k]
return {
"class": final_class,
"p100": p100,
"ordinal_probs": {LABELS[i]: float(prob_ord[i]) for i in range(len(LABELS))},
"expected_value": float(yhat)
}
def predict_dict(self, payload: dict, include_neg: bool=False):
rid = str(uuid.uuid4())
raw = {k: payload.get(k, None) for k in FEATURE_MAP.values()}
df_row_raw = pd.DataFrame([raw])
te_oh = self.preprocess_apply(df_row_raw)
X_df = te_oh.reindex(columns=self.feat_cols_full, fill_value=0.0)
X = X_df.values
p100 = float(self.stage1_final.predict_proba(X)[:,1][0])
prob_ord = self.stage2_final.predict_proba(X)[0]
prob_ord = prob_ord / (prob_ord.sum() or 1.0)
yhat = 100.0*p100 + (1.0-p100)*float((prob_ord @ MIDPOINTS))
if p100 >= P100_THR_AUTO:
names, contrib = self.explain_text_for_stage1(X[0], df_row_raw)
txt_pos, txt_neg, pos_pairs, neg_pairs = self.summary_from_names_contrib(
names, contrib, include_neg=include_neg
)
final_class = "100%"
stage_used = "stage1"
k_thr = None
else:
k = int(np.argmax(prob_ord)); k_thr = min(max(1, k), 3)
names, contrib = self.explain_text_for_stage2(X[0], df_row_raw, k_thr=k_thr)
txt_pos, txt_neg, pos_pairs, neg_pairs = self.summary_from_names_contrib(
names, contrib, include_neg=include_neg
)
final_class = ["quasi_nulla","bassa","media","alta"][k]
stage_used = "stage2"
one_liner = self.build_one_liner(final_class, stage_used, p100, yhat, k_thr, pos_pairs, neg_pairs)
return {
"request_id": rid,
"stage_used": stage_used,
"class": final_class,
"p100": p100,
"expected_value": yhat,
"ordinal_probs": {LABELS[i]: float(prob_ord[i]) for i in range(len(LABELS))},
"k_thr": k_thr,
"shap": {
"positivi_top": txt_pos, # punti di probabilità (0..1)
"negativi_top": txt_neg if include_neg else []
},
"one_liner": one_liner
}
|