File size: 9,181 Bytes
65f61dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# The MIT License (MIT)
# 
# Copyright (c) 2015 braindead
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I
# simply modified the interface to meet my needs.


import numpy as np
import math
from scipy.special import expn
from collections import namedtuple

NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2")


def profile_noise(noise, sampling_rate, window_size=0):
    """
    Creates a profile of the noise in a given waveform.
    
    :param noise: a waveform containing noise ONLY, as a numpy array of floats or ints. 
    :param sampling_rate: the sampling rate of the audio
    :param window_size: the size of the window the logmmse algorithm operates on. A default value 
    will be picked if left as 0.
    :return: a NoiseProfile object
    """
    noise, dtype = to_float(noise)
    noise += np.finfo(np.float64).eps

    if window_size == 0:
        window_size = int(math.floor(0.02 * sampling_rate))

    if window_size % 2 == 1:
        window_size = window_size + 1
    
    perc = 50
    len1 = int(math.floor(window_size * perc / 100))
    len2 = int(window_size - len1)

    win = np.hanning(window_size)
    win = win * len2 / np.sum(win)
    n_fft = 2 * window_size

    noise_mean = np.zeros(n_fft)
    n_frames = len(noise) // window_size
    for j in range(0, window_size * n_frames, window_size):
        noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0))
    noise_mu2 = (noise_mean / n_frames) ** 2
    
    return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2)


def denoise(wav, noise_profile: NoiseProfile, eta=0.15):
    """
    Cleans the noise from a speech waveform given a noise profile. The waveform must have the 
    same sampling rate as the one used to create the noise profile. 
    
    :param wav: a speech waveform as a numpy array of floats or ints.
    :param noise_profile: a NoiseProfile object that was created from a similar (or a segment of 
    the same) waveform.
    :param eta: voice threshold for noise update. While the voice activation detection value is 
    below this threshold, the noise profile will be continuously updated throughout the audio. 
    Set to 0 to disable updating the noise profile.
    :return: the clean wav as a numpy array of floats or ints of the same length.
    """
    wav, dtype = to_float(wav)
    wav += np.finfo(np.float64).eps
    p = noise_profile
    
    nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2))
    x_final = np.zeros(nframes * p.len2)

    aa = 0.98
    mu = 0.98
    ksi_min = 10 ** (-25 / 10)
    
    x_old = np.zeros(p.len1)
    xk_prev = np.zeros(p.len1)
    noise_mu2 = p.noise_mu2
    for k in range(0, nframes * p.len2, p.len2):
        insign = p.win * wav[k:k + p.window_size]

        spec = np.fft.fft(insign, p.n_fft, axis=0)
        sig = np.absolute(spec)
        sig2 = sig ** 2

        gammak = np.minimum(sig2 / noise_mu2, 40)

        if xk_prev.all() == 0:
            ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
        else:
            ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
            ksi = np.maximum(ksi_min, ksi)

        log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi)
        vad_decision = np.sum(log_sigma_k) / p.window_size
        if vad_decision < eta:
            noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2

        a = ksi / (1 + ksi)
        vk = a * gammak
        ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
        hw = a * np.exp(ei_vk)
        sig = sig * hw
        xk_prev = sig ** 2
        xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0)
        xi_w = np.real(xi_w)

        x_final[k:k + p.len2] = x_old + xi_w[0:p.len1]
        x_old = xi_w[p.len1:p.window_size]

    output = from_float(x_final, dtype)
    output = np.pad(output, (0, len(wav) - len(output)), mode="constant")
    return output


## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that 
## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of 
## webrctvad
# def vad(wav, sampling_rate, eta=0.15, window_size=0):
#     """
#     TODO: fix doc
#     Creates a profile of the noise in a given waveform.
# 
#     :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints. 
#     :param sampling_rate: the sampling rate of the audio
#     :param window_size: the size of the window the logmmse algorithm operates on. A default value 
#     will be picked if left as 0.
#     :param eta: voice threshold for noise update. While the voice activation detection value is 
#     below this threshold, the noise profile will be continuously updated throughout the audio. 
#     Set to 0 to disable updating the noise profile.
#     """
#     wav, dtype = to_float(wav)
#     wav += np.finfo(np.float64).eps
#     
#     if window_size == 0:
#         window_size = int(math.floor(0.02 * sampling_rate))
#     
#     if window_size % 2 == 1:
#         window_size = window_size + 1
#     
#     perc = 50
#     len1 = int(math.floor(window_size * perc / 100))
#     len2 = int(window_size - len1)
#     
#     win = np.hanning(window_size)
#     win = win * len2 / np.sum(win)
#     n_fft = 2 * window_size
#     
#     wav_mean = np.zeros(n_fft)
#     n_frames = len(wav) // window_size
#     for j in range(0, window_size * n_frames, window_size):
#         wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0))
#     noise_mu2 = (wav_mean / n_frames) ** 2
#     
#     wav, dtype = to_float(wav)
#     wav += np.finfo(np.float64).eps
#     
#     nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2))
#     vad = np.zeros(nframes * len2, dtype=np.bool)
# 
#     aa = 0.98
#     mu = 0.98
#     ksi_min = 10 ** (-25 / 10)
#     
#     xk_prev = np.zeros(len1)
#     noise_mu2 = noise_mu2
#     for k in range(0, nframes * len2, len2):
#         insign = win * wav[k:k + window_size]
#         
#         spec = np.fft.fft(insign, n_fft, axis=0)
#         sig = np.absolute(spec)
#         sig2 = sig ** 2
#         
#         gammak = np.minimum(sig2 / noise_mu2, 40)
#         
#         if xk_prev.all() == 0:
#             ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
#         else:
#             ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
#             ksi = np.maximum(ksi_min, ksi)
#         
#         log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi)
#         vad_decision = np.sum(log_sigma_k) / window_size
#         if vad_decision < eta:
#             noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
#         print(vad_decision)
#         
#         a = ksi / (1 + ksi)
#         vk = a * gammak
#         ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
#         hw = a * np.exp(ei_vk)
#         sig = sig * hw
#         xk_prev = sig ** 2
#         
#         vad[k:k + len2] = vad_decision >= eta
#         
#     vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant")
#     return vad


def to_float(_input):
    if _input.dtype == np.float64:
        return _input, _input.dtype
    elif _input.dtype == np.float32:
        return _input.astype(np.float64), _input.dtype
    elif _input.dtype == np.uint8:
        return (_input - 128) / 128., _input.dtype
    elif _input.dtype == np.int16:
        return _input / 32768., _input.dtype
    elif _input.dtype == np.int32:
        return _input / 2147483648., _input.dtype
    raise ValueError('Unsupported wave file format')


def from_float(_input, dtype):
    if dtype == np.float64:
        return _input, np.float64
    elif dtype == np.float32:
        return _input.astype(np.float32)
    elif dtype == np.uint8:
        return ((_input * 128) + 128).astype(np.uint8)
    elif dtype == np.int16:
        return (_input * 32768).astype(np.int16)
    elif dtype == np.int32:
        print(_input)
        return (_input * 2147483648).astype(np.int32)
    raise ValueError('Unsupported wave file format')