import streamlit as st from datasets import load_dataset load_dataset("juanberasategui/Crypto_Tweets") load_dataset("Ghosthash/Tweets") # from transformers import AutoModelForCausalLM, AutoTokenizer # model_path = "cognitivecomputations/dolphin-2.8-mistral-7b-v02" # tokenizer = AutoTokenizer.from_pretrained(model_path) # model = AutoModelForCausalLM.from_pretrained( # model_path, # device_map="auto", # torch_dtype='auto' # ).eval() # text = st.text_input("enter text here") # if text: # messages = [ # {"role": "user", "content": text}, # ] # input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') # output_ids = model.generate(input_ids.to('cuda')) # response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # print(response) # st.json({ # "response": response # }) from transformers import pipeline pipe = pipeline("text-generation", model="cognitivecomputations/dolphin-2.8-mistral-7b-v02", device=1) text = st.text_input("enter text here") if text: response = pipe(text, max_new_tokens=1000) st.json(response)