import gradio as gr import os import json import torch import subprocess import sys from dotenv import load_dotenv import logging import threading # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(), logging.FileHandler("app.log") ] ) logger = logging.getLogger(__name__) # Load environment variables load_dotenv() # Get script directory - important for Hugging Face Space paths SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) BASE_DIR = os.path.abspath(os.path.join(SCRIPT_DIR, ".")) # Load config file def load_config(config_path="transformers_config.json"): config_path = os.path.join(BASE_DIR, config_path) try: with open(config_path, 'r') as f: config = json.load(f) return config except Exception as e: logger.error(f"Error loading config: {str(e)}") return {} # Load configuration config = load_config() model_config = config.get("model_config", {}) # Model details from config MODEL_NAME = model_config.get("model_name_or_path", "unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit") SPACE_NAME = os.getenv("HF_SPACE_NAME", "phi4training") # Function to run training in a thread and stream output to container logs def run_training(): """Run the training script and stream its output to container logs""" # Locate training script using absolute path training_script = os.path.join(BASE_DIR, "run_cloud_training.py") # Check if file exists and log the path if not os.path.exists(training_script): print(f"ERROR: Training script not found at: {training_script}") print(f"Current directory: {os.getcwd()}") print("Available files:") for file in os.listdir(BASE_DIR): print(f" - {file}") return print(f"Found training script at: {training_script}") process = subprocess.Popen( [sys.executable, training_script], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, bufsize=1 ) # Stream output directly to sys.stdout (container logs) for line in iter(process.stdout.readline, ''): sys.stdout.write(line) sys.stdout.flush() # Function to start the training process def start_training(): try: # Print directly to container logs print("\n===== STARTING TRAINING PROCESS =====\n") print(f"Model: {MODEL_NAME}") print(f"Base directory: {BASE_DIR}") print(f"Current working directory: {os.getcwd()}") print(f"Training with configuration from transformers_config.json") print("Training logs will appear below:") print("=" * 50) # Start training in a separate thread training_thread = threading.Thread(target=run_training) training_thread.daemon = True # Allow the thread to be terminated when app exits training_thread.start() # Log the start of training logger.info("Training started in background thread") return """ ✅ Training process initiated! The model is now being fine-tuned in the background. To monitor progress: 1. Check the Hugging Face space logs in the "Logs" tab 2. You should see training output appearing directly in the logs 3. The process will continue running in the background NOTE: This is a research training phase only, no model outputs will be available. """ except Exception as e: logger.error(f"Error starting training: {str(e)}") return f"❌ Error starting training: {str(e)}" # Create Gradio interface - training status only, no model outputs with gr.Blocks(css="footer {visibility: hidden}") as demo: gr.Markdown(f"# {SPACE_NAME}: Research Training Dashboard") with gr.Row(): with gr.Column(): status = gr.Markdown( f""" ## DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit Training Dashboard **Model**: {MODEL_NAME} **Dataset**: phi4-cognitive-dataset This is a multidisciplinary research training phase. The model is not available for interactive use. ### Training Configuration: - **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)} - **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)} - **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)} - **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)} - **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)} ⚠️ **NOTE**: This space does not provide model outputs during the research training phase. All logs are available in the Hugging Face "Logs" tab. """ ) with gr.Row(): # Add button for starting training start_btn = gr.Button("Start Training", variant="primary") # Output area for training start messages training_output = gr.Markdown("") # Connect start button to function start_btn.click(start_training, outputs=training_output) gr.Markdown(""" ### Research Training Information This model is being fine-tuned on research-focused datasets and is not available for interactive querying. The training process will run in the background and logs will be available in the Hugging Face UI. #### Instructions 1. Click "Start Training" to begin the fine-tuning process 2. Monitor progress in the Hugging Face "Logs" tab 3. Training metrics and results will be saved to the output directory #### About This Project The model is being fine-tuned on the phi4-cognitive-dataset with a focus on research capabilities. This training phase does not include any interactive features or output generation. """) # Launch the interface if __name__ == "__main__": # Start Gradio with minimal features print("\n===== RESEARCH TRAINING DASHBOARD STARTED =====\n") print(f"Base directory: {BASE_DIR}") print(f"Current working directory: {os.getcwd()}") print("Available files:") for file in os.listdir(BASE_DIR): print(f" - {file}") print("\nClick 'Start Training' to begin the fine-tuning process") print("All training output will appear in these logs") logger.info("Starting research training dashboard") demo.launch(share=False)