--- title: unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit (Research Training) emoji: 🧪 colorFrom: blue colorTo: indigo sdk: gradio sdk_version: 5.17.0 app_file: app.py pinned: false license: mit --- # Model Fine-Tuning Project ## Overview - **Goal**: Fine-tune unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit using pre-tokenized JSONL dataset - **Model**: `unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit` - **Important**: Already 4-bit quantized - do not quantize further - **Dataset**: `phi4-cognitive-dataset` ⚠️ **RESEARCH TRAINING PHASE ONLY**: This space is being used for training purposes and does not provide interactive model outputs. ### Dataset Specs - Entries under 2048 tokens - Fields: `prompt_number`, `article_id`, `conversations` - Process in ascending `prompt_number` order - Pre-tokenized dataset - no additional tokenization needed ### Hardware - GPU: 1x L40S (48GB VRAM) - RAM: 62GB - CPU: 8 cores ## Environment Variables (.env) - `HF_TOKEN`: Hugging Face API token - `HF_USERNAME`: Hugging Face username - `HF_SPACE_NAME`: Target space name ## Files ### 1. `app.py` - Training status dashboard - No interactive model demo (research phase only) ### 2. `transformers_config.json` - Configuration for Hugging Face Transformers - Contains: model parameters, hardware settings, optimizer details - Specifies pre-tokenized dataset handling ### 3. `run_cloud_training.py` - Loads pre-tokenized dataset, sorts by `prompt_number`, initiates training 1. Load and sort JSONL by `prompt_number` 2. Use pre-tokenized input_ids directly (no tokenization) 3. Initialize with parameters from config 4. Execute training with metrics, checkpoints, error handling - Uses Hugging Face's Trainer API with custom pre-tokenized data collator ### 4. `requirements.txt` - Python dependencies: `transformers`, `datasets`, `torch`, etc. - Contains unsloth for optimized training ### 5. `upload_to_space.py` - Update model and space directly using HF API ## Implementation Notes ### Best Practices - Dataset is pre-tokenized and sorted by `prompt_number` - Settings stored in config file, avoiding hardcoding - Hardware-optimized training parameters - Gradient checkpointing and mixed precision training - Complete logging for monitoring progress ### Model Repository This space hosts a fine-tuned version of the [unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit](https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit) model. Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference