qwen4bit / run_cloud_training.py
George-API's picture
Upload run_cloud_training.py with huggingface_hub
23c5657 verified
#!/usr/bin/env python
"""
Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
- Optimized for A100 GPU with pre-tokenized datasets
- Research training only (no inference)
- CLOUD BASED TRAINING - Hugging Face Spaces
"""
import os
import logging
import json
import torch
import argparse
import shutil
from pathlib import Path
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, AutoConfig, BitsAndBytesConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig, get_peft_model
from dotenv import load_dotenv
from huggingface_hub import HfApi, upload_folder
# Basic environment setup for A100
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:512"
os.environ["NCCL_P2P_DISABLE"] = "1" # Can help with A100 multi-GPU setups
# Force GPU mode in Space if we're using a pre-quantized model
os.environ["FORCE_GPU"] = "1"
# Disable tokenizers parallelism warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Create triton directory to avoid warning
os.makedirs(os.path.expanduser("~/.triton/autotune"), exist_ok=True)
# Default dataset with proper namespace
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Determine if we're running in HF Space
def is_running_in_space():
"""Check if we're running in a Hugging Face Space"""
return os.environ.get("SPACE_ID") is not None
# Check if a model is pre-quantized (4-bit or 8-bit)
def is_model_pre_quantized(model_name):
"""Check if model is already pre-quantized based on name"""
pre_quantized_keywords = ["bnb-4bit", "4bit", "8bit", "quantized", "unsloth"]
return any(keyword in model_name.lower() for keyword in pre_quantized_keywords)
# Check if GPU is available
def is_gpu_available():
"""Simple check if CUDA is available according to PyTorch"""
return torch.cuda.is_available()
# Check if fully compatible CUDA is available for training
def is_cuda_fully_available(model_name):
"""
Check if CUDA is fully available for training with bitsandbytes.
More strict than torch.cuda.is_available() - requires full GPU compatibility.
"""
# If model is pre-quantized and we're in a Space with GPU selected, trust it
if is_running_in_space() and is_model_pre_quantized(model_name) and is_gpu_available():
logger.info("Pre-quantized model detected with GPU in Hugging Face Space - using GPU mode")
return True
# For non-Space environments, or non-pre-quantized models, do detailed checks
# If FORCE_GPU is set, trust that
if os.environ.get("FORCE_GPU") == "1":
logger.info("GPU mode forced by environment variable")
return True
# If running in Space and FORCE_GPU not explicitly set, be cautious
if is_running_in_space() and os.environ.get("FORCE_GPU") != "1":
# Check if CUDA is actually available
if is_gpu_available():
logger.info("GPU detected in Hugging Face Space")
return True
else:
logger.warning("No GPU detected in Hugging Face Space despite hardware selection")
return False
# If CUDA is not available according to PyTorch, we definitely can't use it
if not is_gpu_available():
logger.warning("CUDA not available according to PyTorch")
return False
# Only test bitsandbytes if necessary (not for pre-quantized models)
if not is_model_pre_quantized(model_name):
try:
import bitsandbytes as bnb
logger.info("BitsAndBytes package is installed")
# Try to create a dummy 4-bit computation to verify compatibility
try:
dummy = torch.zeros(1, device="cuda")
a = bnb.nn.Linear4bit(1, 1)
a.to(device="cuda")
result = a(dummy)
logger.info("BitsAndBytes with CUDA is working correctly")
return True
except Exception as e:
logger.warning(f"BitsAndBytes CUDA compatibility test failed: {str(e)}")
return False
except ImportError:
logger.warning("BitsAndBytes package not installed - cannot use 4-bit quantization")
return False
except Exception as e:
logger.warning(f"Unexpected error checking BitsAndBytes: {str(e)}")
return False
# For pre-quantized models without bitsandbytes test
return is_gpu_available()
# Create a marker file to indicate training is active
def create_training_marker(output_dir):
os.makedirs(output_dir, exist_ok=True)
with open("TRAINING_ACTIVE", "w") as f:
f.write(f"Training active in {output_dir}")
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
f.write("This model is for research training only. No interactive outputs.")
# Remove the training marker file
def remove_training_marker():
if os.path.exists("TRAINING_ACTIVE"):
os.remove("TRAINING_ACTIVE")
logger.info("Removed training active marker")
# Function to upload model to Hugging Face Hub
def upload_to_huggingface(output_dir, repo_name=None, private=False):
"""
Upload the trained model to Hugging Face Hub
Args:
output_dir: Directory containing the model files
repo_name: Name of the repository on HF Hub (default: derived from output_dir)
private: Whether the repository should be private (default: False)
Returns:
str: URL of the uploaded model on HF Hub
"""
logger.info(f"Uploading model from {output_dir} to Hugging Face Hub")
# Get HF token from environment
token = os.environ.get("HF_TOKEN")
if not token:
logger.error("HF_TOKEN environment variable not set. Please set it to upload to Hugging Face Hub.")
logger.error("You can get a token from https://huggingface.co/settings/tokens")
raise ValueError("HF_TOKEN not set")
# Get or create repo name
if not repo_name:
# Use the output directory name as the repository name
repo_name = os.path.basename(os.path.normpath(output_dir))
logger.info(f"Using repository name: {repo_name}")
# Get HF username
api = HfApi(token=token)
user_info = api.whoami()
username = user_info["name"]
# Create full repository name
full_repo_name = f"{username}/{repo_name}"
logger.info(f"Creating repository: {full_repo_name}")
# Create repository if it doesn't exist
api.create_repo(
repo_id=full_repo_name,
exist_ok=True,
private=private
)
# Upload model files
logger.info(f"Uploading files from {output_dir} to {full_repo_name}")
api.upload_folder(
folder_path=output_dir,
repo_id=full_repo_name,
commit_message="Upload model files"
)
# Create model card
model_card = f"""
# {repo_name}
This model was fine-tuned using the script at https://github.com/George-API/phi4-cognitive-dataset.
## Model details
- Base model: DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
- Dataset: {DEFAULT_DATASET}
- Training: Research only
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(model_card)
# Upload the model card
api.upload_file(
path_or_fileobj=os.path.join(output_dir, "README.md"),
path_in_repo="README.md",
repo_id=full_repo_name,
commit_message="Add model card"
)
logger.info(f"Model successfully uploaded to https://huggingface.co/{full_repo_name}")
return f"https://huggingface.co/{full_repo_name}"
# Custom data collator for pre-tokenized data
class PreTokenizedCollator(DataCollatorMixin):
def __init__(self, pad_token_id=0, tokenizer=None):
self.pad_token_id = pad_token_id
self.tokenizer = tokenizer # Keep reference to tokenizer for fallback
def __call__(self, features):
# Extract features properly from the batch
processed_features = []
for feature in features:
# If input_ids is directly available, use it
if 'input_ids' in feature and isinstance(feature['input_ids'], list):
processed_features.append(feature)
continue
# If input_ids is not available, try to extract from conversations
if 'input_ids' not in feature and 'conversations' in feature:
conversations = feature['conversations']
if isinstance(conversations, list) and len(conversations) > 0:
# Case 1: If conversations has 'input_ids' field (pre-tokenized)
if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
feature['input_ids'] = conversations[0]['input_ids']
# Case 2: If conversations itself contains input_ids
elif all(isinstance(x, int) for x in conversations):
feature['input_ids'] = conversations
# Case 3: If conversations has 'content' field
elif isinstance(conversations[0], dict) and 'content' in conversations[0]:
content = conversations[0]['content']
# If content is already tokens, use directly
if isinstance(content, list) and all(isinstance(x, int) for x in content):
feature['input_ids'] = content
# If content is a string and we have tokenizer, tokenize as fallback
elif isinstance(content, str) and self.tokenizer:
logger.warning("Tokenizing string content as fallback")
feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
# Ensure input_ids is present and is a list of integers
if 'input_ids' in feature:
if isinstance(feature['input_ids'], str) and self.tokenizer:
feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
elif not isinstance(feature['input_ids'], list):
try:
feature['input_ids'] = list(feature['input_ids'])
except Exception as e:
logger.error(f"Could not convert input_ids to list: {e}")
continue
processed_features.append(feature)
if len(processed_features) == 0:
raise ValueError("No valid examples found. Check dataset structure.")
# Determine max length in this batch
batch_max_len = max(len(x["input_ids"]) for x in processed_features)
# Initialize batch tensors
batch = {
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
}
# Fill batch tensors
for i, feature in enumerate(processed_features):
input_ids = feature["input_ids"]
seq_len = len(input_ids)
# Convert to tensor if it's a list
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids, dtype=torch.long)
# Copy data to batch tensors
batch["input_ids"][i, :seq_len] = input_ids
batch["attention_mask"][i, :seq_len] = 1
# If there are labels, use them, otherwise use input_ids
if "labels" in feature:
labels = feature["labels"]
if isinstance(labels, list):
labels = torch.tensor(labels, dtype=torch.long)
batch["labels"][i, :len(labels)] = labels
else:
batch["labels"][i, :seq_len] = input_ids
return batch
# Preprocess dataset to ensure all entries are pre-tokenized
def preprocess_dataset(dataset, tokenizer):
"""Ensure dataset is fully pre-tokenized to avoid tokenization during training"""
logger.info("Pre-processing dataset to ensure all entries are tokenized")
def process_example(example):
# If already has input_ids as list of integers, keep as is
if 'input_ids' in example and isinstance(example['input_ids'], list) and all(isinstance(x, int) for x in example['input_ids']):
return example
# If has conversations with content field
if 'conversations' in example:
conversations = example['conversations']
if isinstance(conversations, list) and len(conversations) > 0:
# If conversations has content field, tokenize it
if isinstance(conversations[0], dict) and 'content' in conversations[0]:
content = conversations[0]['content']
if isinstance(content, str):
example['input_ids'] = tokenizer.encode(content, add_special_tokens=False)
return example
# For any other format, try to extract text and tokenize
text = None
if 'text' in example:
text = example['text']
elif 'content' in example:
text = example['content']
if text and isinstance(text, str):
example['input_ids'] = tokenizer.encode(text, add_special_tokens=False)
return example
return dataset.map(process_example)
# Load and prepare dataset with proper sorting
def load_and_prepare_dataset(dataset_name, config, tokenizer=None):
"""Load and prepare the dataset for fine-tuning with proper sorting"""
# Use the default dataset if the provided one matches the default name without namespace
if dataset_name == "phi4-cognitive-dataset":
dataset_name = DEFAULT_DATASET
logger.info(f"Using full dataset path: {dataset_name}")
logger.info(f"Loading dataset: {dataset_name}")
try:
# Load dataset
try:
dataset = load_dataset(dataset_name)
except Exception as e:
if "doesn't exist on the Hub or cannot be accessed" in str(e):
logger.error(f"Dataset '{dataset_name}' not found. Make sure it exists and is accessible.")
logger.error(f"If using a private dataset, check your HF_TOKEN is set in your environment.")
logger.error(f"If missing namespace, try using the full path: 'George-API/phi4-cognitive-dataset'")
raise
# Extract the split we want to use (usually 'train')
if 'train' in dataset:
dataset = dataset['train']
# Get the dataset config
dataset_config = config.get("dataset_config", {})
sort_field = dataset_config.get("sort_by_field", "prompt_number")
# Preprocess dataset to ensure all entries are pre-tokenized
if tokenizer is not None:
dataset = preprocess_dataset(dataset, tokenizer)
# Sort in ascending order by specified field
logger.info(f"Sorting dataset by {sort_field} in ascending order")
dataset = dataset.sort(sort_field)
# Print dataset info
logger.info(f"Dataset loaded with {len(dataset)} entries")
logger.info(f"Dataset columns: {dataset.column_names}")
# Print sample for debugging
if len(dataset) > 0:
logger.info(f"Sample entry structure: {list(dataset[0].keys())}")
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
# Load a simpler, smaller model for CPU mode
def get_small_model_name(original_model_name):
"""Get a smaller model name for CPU mode"""
# If using DeepSeek-R1-Distill-Qwen-14B, use a smaller model
if "DeepSeek" in original_model_name and "14B" in original_model_name:
logger.info("Using smaller model for CPU mode")
return "distilgpt2" # Much smaller model
# Otherwise just use the original model
return original_model_name
# Main training function
def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_name=None, private_repo=False):
# Load environment variables
load_dotenv()
# Load config
with open(config_path, 'r') as f:
config = json.load(f)
# Create training marker
create_training_marker(output_dir)
try:
# Extract configs
model_config = config.get("model_config", {})
training_config = config.get("training_config", {})
hardware_config = config.get("hardware_config", {})
lora_config = config.get("lora_config", {})
dataset_config = config.get("dataset_config", {})
# Log dataset info before loading
logger.info(f"Will load dataset: {dataset_name}")
if dataset_name != DEFAULT_DATASET and "phi4-cognitive-dataset" in dataset_name:
logger.warning(f"Dataset name may need namespace prefix. Current: {dataset_name}")
# Load model settings
original_model_name = model_config.get("model_name_or_path")
# Special handling for pre-quantized models like unsloth models
is_pre_quantized = is_model_pre_quantized(original_model_name)
if is_pre_quantized:
logger.info(f"Detected pre-quantized model: {original_model_name}")
# Determine if we can use CUDA with bitsandbytes
can_use_4bit = is_cuda_fully_available(original_model_name)
# For CPU mode, use a smaller model (unless pre-quantized)
if not can_use_4bit and is_running_in_space() and not is_pre_quantized:
model_name = get_small_model_name(original_model_name)
logger.warning(f"Using smaller model {model_name} in CPU mode for Hugging Face Space")
else:
model_name = original_model_name
logger.info(f"Using model: {model_name}")
# Initialize tokenizer
logger.info("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
# Load and prepare dataset with proper sorting
dataset = load_and_prepare_dataset(dataset_name, config, tokenizer)
# Get quantization config
quant_config = config.get("quantization_config", {})
# Determine if we should use 4-bit quantization
# Pre-quantized models always use their built-in quantization
if is_pre_quantized:
use_4bit = True
logger.info("Using pre-quantized model with built-in quantization")
elif can_use_4bit and quant_config.get("load_in_4bit", True):
use_4bit = True
logger.info("Using 4-bit quantization with CUDA")
else:
use_4bit = False
logger.warning("Using CPU mode without quantization")
# Determine compute dtype based on hardware config
compute_dtype = torch.bfloat16 if hardware_config.get("bf16", False) else torch.float16
logger.info(f"Using compute dtype: {compute_dtype}")
# For pre-quantized models, always use device_map="auto"
if is_pre_quantized and is_gpu_available():
logger.info("Loading pre-quantized model with GPU support")
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=compute_dtype,
trust_remote_code=True,
use_cache=model_config.get("use_cache", False)
)
# Create model with proper configuration for non-pre-quantized models
elif use_4bit and not is_pre_quantized:
logger.info(f"Loading model with 4-bit quantization")
# Create quantization config for GPU
bnb_compute_dtype = torch.bfloat16 if quant_config.get("bnb_4bit_compute_dtype", "float16") == "bfloat16" else torch.float16
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=bnb_compute_dtype,
bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"),
bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True)
)
# Load 4-bit quantized model for GPU
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=compute_dtype,
trust_remote_code=True,
use_cache=model_config.get("use_cache", False),
attn_implementation=hardware_config.get("attn_implementation", "flash_attention_2")
)
else:
# CPU fallback (or non-quantized GPU) mode
logger.warning("Loading model in CPU fallback mode (no 4-bit quantization)")
# Force CPU (safest option in HF Spaces)
device_map = "cpu"
dtype = torch.float32
logger.info("Forcing CPU mode for stability")
# Load model without quantization
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map=device_map,
torch_dtype=dtype,
trust_remote_code=True,
use_cache=model_config.get("use_cache", False),
low_cpu_mem_usage=True
)
# Apply rope scaling if configured and available
if "rope_scaling" in model_config and hasattr(model.config, "rope_scaling"):
logger.info(f"Applying rope scaling: {model_config['rope_scaling']}")
model.config.rope_scaling = model_config["rope_scaling"]
# Create LoRA config
logger.info("Creating LoRA configuration")
# For pre-quantized models, we need proper target modules
default_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj"]
# For pre-quantized models, especially Unsloth ones, we need to be careful with the target modules
if is_pre_quantized:
# For Unsloth models, use special configuration
if "unsloth" in model_name.lower():
default_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
logger.info("Using Unsloth-specific LoRA target modules")
lora_config_obj = LoraConfig(
r=lora_config.get("r", 8),
lora_alpha=lora_config.get("lora_alpha", 32),
lora_dropout=lora_config.get("lora_dropout", 0.05),
bias=lora_config.get("bias", "none"),
task_type="CAUSAL_LM", # Explicitly set the task type
target_modules=lora_config.get("target_modules", default_target_modules)
)
# Apply LoRA to model
logger.info("Applying LoRA to model")
model = get_peft_model(model, lora_config_obj)
logger.info("Successfully applied LoRA")
# Ensure model parameters that need gradients are properly set
if is_pre_quantized:
logger.info("Verifying gradient settings for pre-quantized model")
for name, param in model.named_parameters():
if 'lora' in name: # Only LoRA parameters should be trained
if not param.requires_grad:
logger.warning(f"LoRA parameter {name} doesn't have requires_grad=True, fixing...")
param.requires_grad = True
# Always use minimal batch size for HF Space CPU
if is_running_in_space() and not can_use_4bit and not is_pre_quantized:
per_device_train_batch_size = 1
logger.warning("Using minimal batch size for CPU training in Hugging Face Space")
else:
# Determine batch size based on available hardware
if torch.cuda.is_available():
gpu_info = torch.cuda.get_device_properties(0)
logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
# Check if it's an A100 or high-memory GPU
if "A100" in gpu_info.name or "A10G" in gpu_info.name or gpu_info.total_memory > 40e9:
logger.info("Detected A100 GPU - optimizing for A100")
per_device_train_batch_size = training_config.get("per_device_train_batch_size", 3)
else:
# Use a smaller batch size for other GPUs
per_device_train_batch_size = 2
logger.info(f"Using conservative batch size for non-A100 GPU: {per_device_train_batch_size}")
else:
# Use minimal batch size for CPU
per_device_train_batch_size = 1
logger.warning("No GPU detected - using minimal batch size for CPU training")
# Use full training parameters for pre-quantized models or GPU mode
if is_pre_quantized or can_use_4bit or not is_running_in_space():
num_train_epochs = training_config.get("num_train_epochs", 3)
gradient_accumulation_steps = training_config.get("gradient_accumulation_steps", 2)
fp16 = torch.cuda.is_available() and hardware_config.get("fp16", False)
bf16 = torch.cuda.is_available() and hardware_config.get("bf16", True)
# Disable gradient checkpointing for pre-quantized models as it can cause gradient issues
gradient_checkpointing = torch.cuda.is_available() and hardware_config.get("gradient_checkpointing", True) and not is_pre_quantized
dataloader_workers = training_config.get("dataloader_num_workers", 4)
eval_strategy = training_config.get("eval_strategy", "no")
load_best_model_at_end = False # Must be False when eval_strategy is "no"
if is_pre_quantized:
logger.info("Disabled gradient checkpointing for pre-quantized model to avoid gradient issues")
logger.info("Using full training parameters for GPU mode")
else:
# For Space CPU training mode, use minimal parameters
num_train_epochs = 1
gradient_accumulation_steps = 1
fp16 = False
bf16 = False
gradient_checkpointing = False
dataloader_workers = 0
eval_strategy = "no"
load_best_model_at_end = False
logger.warning("Using minimal parameters for CPU training in Space")
# Configure reporting backends
reports = training_config.get("report_to", ["tensorboard"])
# Create training arguments
logger.info("Creating training arguments")
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=training_config.get("learning_rate", 2e-5),
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
warmup_ratio=training_config.get("warmup_ratio", 0.03),
weight_decay=training_config.get("weight_decay", 0.01),
optim=training_config.get("optim", "adamw_torch"),
fp16=fp16,
bf16=bf16,
max_grad_norm=training_config.get("max_grad_norm", 0.3),
logging_steps=training_config.get("logging_steps", 10),
save_steps=training_config.get("save_steps", 200),
save_total_limit=training_config.get("save_total_limit", 3),
eval_strategy=eval_strategy,
load_best_model_at_end=load_best_model_at_end,
report_to=reports,
logging_first_step=training_config.get("logging_first_step", True),
disable_tqdm=training_config.get("disable_tqdm", False),
remove_unused_columns=False,
gradient_checkpointing=gradient_checkpointing,
dataloader_num_workers=dataloader_workers,
group_by_length=training_config.get("group_by_length", True)
)
# Create trainer with pre-tokenized collator
logger.info("Creating trainer with pre-tokenized collator")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=PreTokenizedCollator(
pad_token_id=tokenizer.pad_token_id,
tokenizer=tokenizer
),
# Add label_names to avoid warning
compute_metrics=None,
tokenizer=tokenizer # Provide tokenizer for proper padding
)
# Start training
logger.info("Starting training - RESEARCH PHASE ONLY")
trainer.train()
# Save the model
logger.info(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
# Save LoRA adapter separately
lora_output_dir = os.path.join(output_dir, "lora_adapter")
model.save_pretrained(lora_output_dir)
logger.info(f"Saved LoRA adapter to {lora_output_dir}")
# Save tokenizer
tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
tokenizer.save_pretrained(tokenizer_output_dir)
logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
# Save config for reference
with open(os.path.join(output_dir, "training_config.json"), "w") as f:
json.dump(config, f, indent=2)
logger.info("Training complete - RESEARCH PHASE ONLY")
# Upload to Hugging Face Hub if requested
if upload_to_hub:
hub_url = upload_to_huggingface(
output_dir=output_dir,
repo_name=hub_repo_name,
private=private_repo
)
logger.info(f"Model uploaded to Hugging Face Hub: {hub_url}")
return output_dir
finally:
# Always remove the training marker when done
remove_training_marker()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)")
parser.add_argument("--config", type=str, default="transformers_config.json",
help="Path to the configuration file")
parser.add_argument("--dataset", type=str, default=DEFAULT_DATASET,
help="Dataset name or path")
parser.add_argument("--output_dir", type=str, default="fine_tuned_model",
help="Output directory for the fine-tuned model")
parser.add_argument("--upload_to_hub", action="store_true",
help="Upload the model to Hugging Face Hub after training")
parser.add_argument("--hub_repo_name", type=str, default=None,
help="Repository name for the model on Hugging Face Hub")
parser.add_argument("--private_repo", action="store_true",
help="Make the Hugging Face Hub repository private")
parser.add_argument("--force_cpu", action="store_true",
help="Force CPU mode even if CUDA is available")
args = parser.parse_args()
# Force CPU mode if requested
if args.force_cpu:
os.environ["FORCE_GPU"] = "0"
logger.info("Forcing CPU mode as requested")
try:
output_path = train(
args.config,
args.dataset,
args.output_dir,
upload_to_hub=args.upload_to_hub,
hub_repo_name=args.hub_repo_name,
private_repo=args.private_repo
)
print(f"Research training completed. Model saved to: {output_path}")
if args.upload_to_hub:
print("Model was also uploaded to Hugging Face Hub.")
except Exception as e:
logging.error(f"Training failed: {str(e)}")
remove_training_marker() # Clean up marker if training fails
raise