Spaces:
Running
Running
#!/usr/bin/env python | |
""" | |
Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit | |
- Optimized for A100 GPU with pre-tokenized datasets | |
- Research training only (no inference) | |
- CLOUD BASED TRAINING - Hugging Face Spaces | |
""" | |
import os | |
import logging | |
import json | |
import torch | |
import argparse | |
import shutil | |
from pathlib import Path | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, AutoConfig, BitsAndBytesConfig | |
from transformers.data.data_collator import DataCollatorMixin | |
from peft import LoraConfig, get_peft_model | |
from dotenv import load_dotenv | |
from huggingface_hub import HfApi, upload_folder | |
# Basic environment setup for A100 | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:512" | |
os.environ["NCCL_P2P_DISABLE"] = "1" # Can help with A100 multi-GPU setups | |
# Force GPU mode in Space if we're using a pre-quantized model | |
os.environ["FORCE_GPU"] = "1" | |
# Disable tokenizers parallelism warning | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Create triton directory to avoid warning | |
os.makedirs(os.path.expanduser("~/.triton/autotune"), exist_ok=True) | |
# Default dataset with proper namespace | |
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset" | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Determine if we're running in HF Space | |
def is_running_in_space(): | |
"""Check if we're running in a Hugging Face Space""" | |
return os.environ.get("SPACE_ID") is not None | |
# Check if a model is pre-quantized (4-bit or 8-bit) | |
def is_model_pre_quantized(model_name): | |
"""Check if model is already pre-quantized based on name""" | |
pre_quantized_keywords = ["bnb-4bit", "4bit", "8bit", "quantized", "unsloth"] | |
return any(keyword in model_name.lower() for keyword in pre_quantized_keywords) | |
# Check if GPU is available | |
def is_gpu_available(): | |
"""Simple check if CUDA is available according to PyTorch""" | |
return torch.cuda.is_available() | |
# Check if fully compatible CUDA is available for training | |
def is_cuda_fully_available(model_name): | |
""" | |
Check if CUDA is fully available for training with bitsandbytes. | |
More strict than torch.cuda.is_available() - requires full GPU compatibility. | |
""" | |
# If model is pre-quantized and we're in a Space with GPU selected, trust it | |
if is_running_in_space() and is_model_pre_quantized(model_name) and is_gpu_available(): | |
logger.info("Pre-quantized model detected with GPU in Hugging Face Space - using GPU mode") | |
return True | |
# For non-Space environments, or non-pre-quantized models, do detailed checks | |
# If FORCE_GPU is set, trust that | |
if os.environ.get("FORCE_GPU") == "1": | |
logger.info("GPU mode forced by environment variable") | |
return True | |
# If running in Space and FORCE_GPU not explicitly set, be cautious | |
if is_running_in_space() and os.environ.get("FORCE_GPU") != "1": | |
# Check if CUDA is actually available | |
if is_gpu_available(): | |
logger.info("GPU detected in Hugging Face Space") | |
return True | |
else: | |
logger.warning("No GPU detected in Hugging Face Space despite hardware selection") | |
return False | |
# If CUDA is not available according to PyTorch, we definitely can't use it | |
if not is_gpu_available(): | |
logger.warning("CUDA not available according to PyTorch") | |
return False | |
# Only test bitsandbytes if necessary (not for pre-quantized models) | |
if not is_model_pre_quantized(model_name): | |
try: | |
import bitsandbytes as bnb | |
logger.info("BitsAndBytes package is installed") | |
# Try to create a dummy 4-bit computation to verify compatibility | |
try: | |
dummy = torch.zeros(1, device="cuda") | |
a = bnb.nn.Linear4bit(1, 1) | |
a.to(device="cuda") | |
result = a(dummy) | |
logger.info("BitsAndBytes with CUDA is working correctly") | |
return True | |
except Exception as e: | |
logger.warning(f"BitsAndBytes CUDA compatibility test failed: {str(e)}") | |
return False | |
except ImportError: | |
logger.warning("BitsAndBytes package not installed - cannot use 4-bit quantization") | |
return False | |
except Exception as e: | |
logger.warning(f"Unexpected error checking BitsAndBytes: {str(e)}") | |
return False | |
# For pre-quantized models without bitsandbytes test | |
return is_gpu_available() | |
# Create a marker file to indicate training is active | |
def create_training_marker(output_dir): | |
os.makedirs(output_dir, exist_ok=True) | |
with open("TRAINING_ACTIVE", "w") as f: | |
f.write(f"Training active in {output_dir}") | |
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f: | |
f.write("This model is for research training only. No interactive outputs.") | |
# Remove the training marker file | |
def remove_training_marker(): | |
if os.path.exists("TRAINING_ACTIVE"): | |
os.remove("TRAINING_ACTIVE") | |
logger.info("Removed training active marker") | |
# Function to upload model to Hugging Face Hub | |
def upload_to_huggingface(output_dir, repo_name=None, private=False): | |
""" | |
Upload the trained model to Hugging Face Hub | |
Args: | |
output_dir: Directory containing the model files | |
repo_name: Name of the repository on HF Hub (default: derived from output_dir) | |
private: Whether the repository should be private (default: False) | |
Returns: | |
str: URL of the uploaded model on HF Hub | |
""" | |
logger.info(f"Uploading model from {output_dir} to Hugging Face Hub") | |
# Get HF token from environment | |
token = os.environ.get("HF_TOKEN") | |
if not token: | |
logger.error("HF_TOKEN environment variable not set. Please set it to upload to Hugging Face Hub.") | |
logger.error("You can get a token from https://huggingface.co/settings/tokens") | |
raise ValueError("HF_TOKEN not set") | |
# Get or create repo name | |
if not repo_name: | |
# Use the output directory name as the repository name | |
repo_name = os.path.basename(os.path.normpath(output_dir)) | |
logger.info(f"Using repository name: {repo_name}") | |
# Get HF username | |
api = HfApi(token=token) | |
user_info = api.whoami() | |
username = user_info["name"] | |
# Create full repository name | |
full_repo_name = f"{username}/{repo_name}" | |
logger.info(f"Creating repository: {full_repo_name}") | |
# Create repository if it doesn't exist | |
api.create_repo( | |
repo_id=full_repo_name, | |
exist_ok=True, | |
private=private | |
) | |
# Upload model files | |
logger.info(f"Uploading files from {output_dir} to {full_repo_name}") | |
api.upload_folder( | |
folder_path=output_dir, | |
repo_id=full_repo_name, | |
commit_message="Upload model files" | |
) | |
# Create model card | |
model_card = f""" | |
# {repo_name} | |
This model was fine-tuned using the script at https://github.com/George-API/phi4-cognitive-dataset. | |
## Model details | |
- Base model: DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit | |
- Dataset: {DEFAULT_DATASET} | |
- Training: Research only | |
""" | |
with open(os.path.join(output_dir, "README.md"), "w") as f: | |
f.write(model_card) | |
# Upload the model card | |
api.upload_file( | |
path_or_fileobj=os.path.join(output_dir, "README.md"), | |
path_in_repo="README.md", | |
repo_id=full_repo_name, | |
commit_message="Add model card" | |
) | |
logger.info(f"Model successfully uploaded to https://huggingface.co/{full_repo_name}") | |
return f"https://huggingface.co/{full_repo_name}" | |
# Custom data collator for pre-tokenized data | |
class PreTokenizedCollator(DataCollatorMixin): | |
def __init__(self, pad_token_id=0, tokenizer=None): | |
self.pad_token_id = pad_token_id | |
self.tokenizer = tokenizer # Keep reference to tokenizer for fallback | |
def __call__(self, features): | |
# Extract features properly from the batch | |
processed_features = [] | |
for feature in features: | |
# If input_ids is directly available, use it | |
if 'input_ids' in feature and isinstance(feature['input_ids'], list): | |
processed_features.append(feature) | |
continue | |
# If input_ids is not available, try to extract from conversations | |
if 'input_ids' not in feature and 'conversations' in feature: | |
conversations = feature['conversations'] | |
if isinstance(conversations, list) and len(conversations) > 0: | |
# Case 1: If conversations has 'input_ids' field (pre-tokenized) | |
if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]: | |
feature['input_ids'] = conversations[0]['input_ids'] | |
# Case 2: If conversations itself contains input_ids | |
elif all(isinstance(x, int) for x in conversations): | |
feature['input_ids'] = conversations | |
# Case 3: If conversations has 'content' field | |
elif isinstance(conversations[0], dict) and 'content' in conversations[0]: | |
content = conversations[0]['content'] | |
# If content is already tokens, use directly | |
if isinstance(content, list) and all(isinstance(x, int) for x in content): | |
feature['input_ids'] = content | |
# If content is a string and we have tokenizer, tokenize as fallback | |
elif isinstance(content, str) and self.tokenizer: | |
logger.warning("Tokenizing string content as fallback") | |
feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False) | |
# Ensure input_ids is present and is a list of integers | |
if 'input_ids' in feature: | |
if isinstance(feature['input_ids'], str) and self.tokenizer: | |
feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False) | |
elif not isinstance(feature['input_ids'], list): | |
try: | |
feature['input_ids'] = list(feature['input_ids']) | |
except Exception as e: | |
logger.error(f"Could not convert input_ids to list: {e}") | |
continue | |
processed_features.append(feature) | |
if len(processed_features) == 0: | |
raise ValueError("No valid examples found. Check dataset structure.") | |
# Determine max length in this batch | |
batch_max_len = max(len(x["input_ids"]) for x in processed_features) | |
# Initialize batch tensors | |
batch = { | |
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id, | |
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long), | |
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss | |
} | |
# Fill batch tensors | |
for i, feature in enumerate(processed_features): | |
input_ids = feature["input_ids"] | |
seq_len = len(input_ids) | |
# Convert to tensor if it's a list | |
if isinstance(input_ids, list): | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
# Copy data to batch tensors | |
batch["input_ids"][i, :seq_len] = input_ids | |
batch["attention_mask"][i, :seq_len] = 1 | |
# If there are labels, use them, otherwise use input_ids | |
if "labels" in feature: | |
labels = feature["labels"] | |
if isinstance(labels, list): | |
labels = torch.tensor(labels, dtype=torch.long) | |
batch["labels"][i, :len(labels)] = labels | |
else: | |
batch["labels"][i, :seq_len] = input_ids | |
return batch | |
# Preprocess dataset to ensure all entries are pre-tokenized | |
def preprocess_dataset(dataset, tokenizer): | |
"""Ensure dataset is fully pre-tokenized to avoid tokenization during training""" | |
logger.info("Pre-processing dataset to ensure all entries are tokenized") | |
def process_example(example): | |
# If already has input_ids as list of integers, keep as is | |
if 'input_ids' in example and isinstance(example['input_ids'], list) and all(isinstance(x, int) for x in example['input_ids']): | |
return example | |
# If has conversations with content field | |
if 'conversations' in example: | |
conversations = example['conversations'] | |
if isinstance(conversations, list) and len(conversations) > 0: | |
# If conversations has content field, tokenize it | |
if isinstance(conversations[0], dict) and 'content' in conversations[0]: | |
content = conversations[0]['content'] | |
if isinstance(content, str): | |
example['input_ids'] = tokenizer.encode(content, add_special_tokens=False) | |
return example | |
# For any other format, try to extract text and tokenize | |
text = None | |
if 'text' in example: | |
text = example['text'] | |
elif 'content' in example: | |
text = example['content'] | |
if text and isinstance(text, str): | |
example['input_ids'] = tokenizer.encode(text, add_special_tokens=False) | |
return example | |
return dataset.map(process_example) | |
# Load and prepare dataset with proper sorting | |
def load_and_prepare_dataset(dataset_name, config, tokenizer=None): | |
"""Load and prepare the dataset for fine-tuning with proper sorting""" | |
# Use the default dataset if the provided one matches the default name without namespace | |
if dataset_name == "phi4-cognitive-dataset": | |
dataset_name = DEFAULT_DATASET | |
logger.info(f"Using full dataset path: {dataset_name}") | |
logger.info(f"Loading dataset: {dataset_name}") | |
try: | |
# Load dataset | |
try: | |
dataset = load_dataset(dataset_name) | |
except Exception as e: | |
if "doesn't exist on the Hub or cannot be accessed" in str(e): | |
logger.error(f"Dataset '{dataset_name}' not found. Make sure it exists and is accessible.") | |
logger.error(f"If using a private dataset, check your HF_TOKEN is set in your environment.") | |
logger.error(f"If missing namespace, try using the full path: 'George-API/phi4-cognitive-dataset'") | |
raise | |
# Extract the split we want to use (usually 'train') | |
if 'train' in dataset: | |
dataset = dataset['train'] | |
# Get the dataset config | |
dataset_config = config.get("dataset_config", {}) | |
sort_field = dataset_config.get("sort_by_field", "prompt_number") | |
# Preprocess dataset to ensure all entries are pre-tokenized | |
if tokenizer is not None: | |
dataset = preprocess_dataset(dataset, tokenizer) | |
# Sort in ascending order by specified field | |
logger.info(f"Sorting dataset by {sort_field} in ascending order") | |
dataset = dataset.sort(sort_field) | |
# Print dataset info | |
logger.info(f"Dataset loaded with {len(dataset)} entries") | |
logger.info(f"Dataset columns: {dataset.column_names}") | |
# Print sample for debugging | |
if len(dataset) > 0: | |
logger.info(f"Sample entry structure: {list(dataset[0].keys())}") | |
return dataset | |
except Exception as e: | |
logger.error(f"Error loading dataset: {str(e)}") | |
raise | |
# Load a simpler, smaller model for CPU mode | |
def get_small_model_name(original_model_name): | |
"""Get a smaller model name for CPU mode""" | |
# If using DeepSeek-R1-Distill-Qwen-14B, use a smaller model | |
if "DeepSeek" in original_model_name and "14B" in original_model_name: | |
logger.info("Using smaller model for CPU mode") | |
return "distilgpt2" # Much smaller model | |
# Otherwise just use the original model | |
return original_model_name | |
# Main training function | |
def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_name=None, private_repo=False): | |
# Load environment variables | |
load_dotenv() | |
# Load config | |
with open(config_path, 'r') as f: | |
config = json.load(f) | |
# Create training marker | |
create_training_marker(output_dir) | |
try: | |
# Extract configs | |
model_config = config.get("model_config", {}) | |
training_config = config.get("training_config", {}) | |
hardware_config = config.get("hardware_config", {}) | |
lora_config = config.get("lora_config", {}) | |
dataset_config = config.get("dataset_config", {}) | |
# Log dataset info before loading | |
logger.info(f"Will load dataset: {dataset_name}") | |
if dataset_name != DEFAULT_DATASET and "phi4-cognitive-dataset" in dataset_name: | |
logger.warning(f"Dataset name may need namespace prefix. Current: {dataset_name}") | |
# Load model settings | |
original_model_name = model_config.get("model_name_or_path") | |
# Special handling for pre-quantized models like unsloth models | |
is_pre_quantized = is_model_pre_quantized(original_model_name) | |
if is_pre_quantized: | |
logger.info(f"Detected pre-quantized model: {original_model_name}") | |
# Determine if we can use CUDA with bitsandbytes | |
can_use_4bit = is_cuda_fully_available(original_model_name) | |
# For CPU mode, use a smaller model (unless pre-quantized) | |
if not can_use_4bit and is_running_in_space() and not is_pre_quantized: | |
model_name = get_small_model_name(original_model_name) | |
logger.warning(f"Using smaller model {model_name} in CPU mode for Hugging Face Space") | |
else: | |
model_name = original_model_name | |
logger.info(f"Using model: {model_name}") | |
# Initialize tokenizer | |
logger.info("Loading tokenizer") | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
trust_remote_code=True | |
) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load and prepare dataset with proper sorting | |
dataset = load_and_prepare_dataset(dataset_name, config, tokenizer) | |
# Get quantization config | |
quant_config = config.get("quantization_config", {}) | |
# Determine if we should use 4-bit quantization | |
# Pre-quantized models always use their built-in quantization | |
if is_pre_quantized: | |
use_4bit = True | |
logger.info("Using pre-quantized model with built-in quantization") | |
elif can_use_4bit and quant_config.get("load_in_4bit", True): | |
use_4bit = True | |
logger.info("Using 4-bit quantization with CUDA") | |
else: | |
use_4bit = False | |
logger.warning("Using CPU mode without quantization") | |
# Determine compute dtype based on hardware config | |
compute_dtype = torch.bfloat16 if hardware_config.get("bf16", False) else torch.float16 | |
logger.info(f"Using compute dtype: {compute_dtype}") | |
# For pre-quantized models, always use device_map="auto" | |
if is_pre_quantized and is_gpu_available(): | |
logger.info("Loading pre-quantized model with GPU support") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", | |
torch_dtype=compute_dtype, | |
trust_remote_code=True, | |
use_cache=model_config.get("use_cache", False) | |
) | |
# Create model with proper configuration for non-pre-quantized models | |
elif use_4bit and not is_pre_quantized: | |
logger.info(f"Loading model with 4-bit quantization") | |
# Create quantization config for GPU | |
bnb_compute_dtype = torch.bfloat16 if quant_config.get("bnb_4bit_compute_dtype", "float16") == "bfloat16" else torch.float16 | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=bnb_compute_dtype, | |
bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"), | |
bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True) | |
) | |
# Load 4-bit quantized model for GPU | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
device_map="auto", | |
torch_dtype=compute_dtype, | |
trust_remote_code=True, | |
use_cache=model_config.get("use_cache", False), | |
attn_implementation=hardware_config.get("attn_implementation", "flash_attention_2") | |
) | |
else: | |
# CPU fallback (or non-quantized GPU) mode | |
logger.warning("Loading model in CPU fallback mode (no 4-bit quantization)") | |
# Force CPU (safest option in HF Spaces) | |
device_map = "cpu" | |
dtype = torch.float32 | |
logger.info("Forcing CPU mode for stability") | |
# Load model without quantization | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map=device_map, | |
torch_dtype=dtype, | |
trust_remote_code=True, | |
use_cache=model_config.get("use_cache", False), | |
low_cpu_mem_usage=True | |
) | |
# Apply rope scaling if configured and available | |
if "rope_scaling" in model_config and hasattr(model.config, "rope_scaling"): | |
logger.info(f"Applying rope scaling: {model_config['rope_scaling']}") | |
model.config.rope_scaling = model_config["rope_scaling"] | |
# Create LoRA config | |
logger.info("Creating LoRA configuration") | |
# For pre-quantized models, we need proper target modules | |
default_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj"] | |
# For pre-quantized models, especially Unsloth ones, we need to be careful with the target modules | |
if is_pre_quantized: | |
# For Unsloth models, use special configuration | |
if "unsloth" in model_name.lower(): | |
default_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] | |
logger.info("Using Unsloth-specific LoRA target modules") | |
lora_config_obj = LoraConfig( | |
r=lora_config.get("r", 8), | |
lora_alpha=lora_config.get("lora_alpha", 32), | |
lora_dropout=lora_config.get("lora_dropout", 0.05), | |
bias=lora_config.get("bias", "none"), | |
task_type="CAUSAL_LM", # Explicitly set the task type | |
target_modules=lora_config.get("target_modules", default_target_modules) | |
) | |
# Apply LoRA to model | |
logger.info("Applying LoRA to model") | |
model = get_peft_model(model, lora_config_obj) | |
logger.info("Successfully applied LoRA") | |
# Ensure model parameters that need gradients are properly set | |
if is_pre_quantized: | |
logger.info("Verifying gradient settings for pre-quantized model") | |
for name, param in model.named_parameters(): | |
if 'lora' in name: # Only LoRA parameters should be trained | |
if not param.requires_grad: | |
logger.warning(f"LoRA parameter {name} doesn't have requires_grad=True, fixing...") | |
param.requires_grad = True | |
# Always use minimal batch size for HF Space CPU | |
if is_running_in_space() and not can_use_4bit and not is_pre_quantized: | |
per_device_train_batch_size = 1 | |
logger.warning("Using minimal batch size for CPU training in Hugging Face Space") | |
else: | |
# Determine batch size based on available hardware | |
if torch.cuda.is_available(): | |
gpu_info = torch.cuda.get_device_properties(0) | |
logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB") | |
# Check if it's an A100 or high-memory GPU | |
if "A100" in gpu_info.name or "A10G" in gpu_info.name or gpu_info.total_memory > 40e9: | |
logger.info("Detected A100 GPU - optimizing for A100") | |
per_device_train_batch_size = training_config.get("per_device_train_batch_size", 3) | |
else: | |
# Use a smaller batch size for other GPUs | |
per_device_train_batch_size = 2 | |
logger.info(f"Using conservative batch size for non-A100 GPU: {per_device_train_batch_size}") | |
else: | |
# Use minimal batch size for CPU | |
per_device_train_batch_size = 1 | |
logger.warning("No GPU detected - using minimal batch size for CPU training") | |
# Use full training parameters for pre-quantized models or GPU mode | |
if is_pre_quantized or can_use_4bit or not is_running_in_space(): | |
num_train_epochs = training_config.get("num_train_epochs", 3) | |
gradient_accumulation_steps = training_config.get("gradient_accumulation_steps", 2) | |
fp16 = torch.cuda.is_available() and hardware_config.get("fp16", False) | |
bf16 = torch.cuda.is_available() and hardware_config.get("bf16", True) | |
# Disable gradient checkpointing for pre-quantized models as it can cause gradient issues | |
gradient_checkpointing = torch.cuda.is_available() and hardware_config.get("gradient_checkpointing", True) and not is_pre_quantized | |
dataloader_workers = training_config.get("dataloader_num_workers", 4) | |
eval_strategy = training_config.get("eval_strategy", "no") | |
load_best_model_at_end = False # Must be False when eval_strategy is "no" | |
if is_pre_quantized: | |
logger.info("Disabled gradient checkpointing for pre-quantized model to avoid gradient issues") | |
logger.info("Using full training parameters for GPU mode") | |
else: | |
# For Space CPU training mode, use minimal parameters | |
num_train_epochs = 1 | |
gradient_accumulation_steps = 1 | |
fp16 = False | |
bf16 = False | |
gradient_checkpointing = False | |
dataloader_workers = 0 | |
eval_strategy = "no" | |
load_best_model_at_end = False | |
logger.warning("Using minimal parameters for CPU training in Space") | |
# Configure reporting backends | |
reports = training_config.get("report_to", ["tensorboard"]) | |
# Create training arguments | |
logger.info("Creating training arguments") | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
num_train_epochs=num_train_epochs, | |
per_device_train_batch_size=per_device_train_batch_size, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
learning_rate=training_config.get("learning_rate", 2e-5), | |
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"), | |
warmup_ratio=training_config.get("warmup_ratio", 0.03), | |
weight_decay=training_config.get("weight_decay", 0.01), | |
optim=training_config.get("optim", "adamw_torch"), | |
fp16=fp16, | |
bf16=bf16, | |
max_grad_norm=training_config.get("max_grad_norm", 0.3), | |
logging_steps=training_config.get("logging_steps", 10), | |
save_steps=training_config.get("save_steps", 200), | |
save_total_limit=training_config.get("save_total_limit", 3), | |
eval_strategy=eval_strategy, | |
load_best_model_at_end=load_best_model_at_end, | |
report_to=reports, | |
logging_first_step=training_config.get("logging_first_step", True), | |
disable_tqdm=training_config.get("disable_tqdm", False), | |
remove_unused_columns=False, | |
gradient_checkpointing=gradient_checkpointing, | |
dataloader_num_workers=dataloader_workers, | |
group_by_length=training_config.get("group_by_length", True) | |
) | |
# Create trainer with pre-tokenized collator | |
logger.info("Creating trainer with pre-tokenized collator") | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
data_collator=PreTokenizedCollator( | |
pad_token_id=tokenizer.pad_token_id, | |
tokenizer=tokenizer | |
), | |
# Add label_names to avoid warning | |
compute_metrics=None, | |
tokenizer=tokenizer # Provide tokenizer for proper padding | |
) | |
# Start training | |
logger.info("Starting training - RESEARCH PHASE ONLY") | |
trainer.train() | |
# Save the model | |
logger.info(f"Saving model to {output_dir}") | |
trainer.save_model(output_dir) | |
# Save LoRA adapter separately | |
lora_output_dir = os.path.join(output_dir, "lora_adapter") | |
model.save_pretrained(lora_output_dir) | |
logger.info(f"Saved LoRA adapter to {lora_output_dir}") | |
# Save tokenizer | |
tokenizer_output_dir = os.path.join(output_dir, "tokenizer") | |
tokenizer.save_pretrained(tokenizer_output_dir) | |
logger.info(f"Saved tokenizer to {tokenizer_output_dir}") | |
# Save config for reference | |
with open(os.path.join(output_dir, "training_config.json"), "w") as f: | |
json.dump(config, f, indent=2) | |
logger.info("Training complete - RESEARCH PHASE ONLY") | |
# Upload to Hugging Face Hub if requested | |
if upload_to_hub: | |
hub_url = upload_to_huggingface( | |
output_dir=output_dir, | |
repo_name=hub_repo_name, | |
private=private_repo | |
) | |
logger.info(f"Model uploaded to Hugging Face Hub: {hub_url}") | |
return output_dir | |
finally: | |
# Always remove the training marker when done | |
remove_training_marker() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)") | |
parser.add_argument("--config", type=str, default="transformers_config.json", | |
help="Path to the configuration file") | |
parser.add_argument("--dataset", type=str, default=DEFAULT_DATASET, | |
help="Dataset name or path") | |
parser.add_argument("--output_dir", type=str, default="fine_tuned_model", | |
help="Output directory for the fine-tuned model") | |
parser.add_argument("--upload_to_hub", action="store_true", | |
help="Upload the model to Hugging Face Hub after training") | |
parser.add_argument("--hub_repo_name", type=str, default=None, | |
help="Repository name for the model on Hugging Face Hub") | |
parser.add_argument("--private_repo", action="store_true", | |
help="Make the Hugging Face Hub repository private") | |
parser.add_argument("--force_cpu", action="store_true", | |
help="Force CPU mode even if CUDA is available") | |
args = parser.parse_args() | |
# Force CPU mode if requested | |
if args.force_cpu: | |
os.environ["FORCE_GPU"] = "0" | |
logger.info("Forcing CPU mode as requested") | |
try: | |
output_path = train( | |
args.config, | |
args.dataset, | |
args.output_dir, | |
upload_to_hub=args.upload_to_hub, | |
hub_repo_name=args.hub_repo_name, | |
private_repo=args.private_repo | |
) | |
print(f"Research training completed. Model saved to: {output_path}") | |
if args.upload_to_hub: | |
print("Model was also uploaded to Hugging Face Hub.") | |
except Exception as e: | |
logging.error(f"Training failed: {str(e)}") | |
remove_training_marker() # Clean up marker if training fails | |
raise |