Spaces:
Running
Running
admin
commited on
Commit
·
be22f80
1
Parent(s):
cd40f0e
sync ms
Browse files- app.py +17 -5
- apis.py → modules/apis.py +44 -57
- deepseek.py → modules/deepseek.py +46 -28
- requirements.txt +3 -3
- utils.py +3 -0
app.py
CHANGED
@@ -1,14 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
from apis import LLM_APIs
|
3 |
-
from deepseek import DeepSeek_R1_Qwen_7B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
if __name__ == "__main__":
|
6 |
with gr.Blocks() as demo:
|
7 |
-
gr.Markdown("#
|
8 |
-
with gr.Tab("API
|
9 |
LLM_APIs()
|
10 |
|
11 |
-
with gr.Tab("
|
12 |
DeepSeek_R1_Qwen_7B()
|
13 |
|
14 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from modules.apis import LLM_APIs
|
3 |
+
from modules.deepseek import DeepSeek_R1_Qwen_7B
|
4 |
+
from utils import EN_US
|
5 |
+
|
6 |
+
ZH2EN = {
|
7 |
+
"# 大模型部署实例合集": "# LLM Deployment Instances",
|
8 |
+
"API 部署聚合": "API Aggregation",
|
9 |
+
"真实 DeepSeek R1 Qwen 7B 模型": "Real DeepSeek R1 Qwen 7B",
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
def _L(zh_txt: str):
|
14 |
+
return ZH2EN[zh_txt] if EN_US else zh_txt
|
15 |
+
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
with gr.Blocks() as demo:
|
19 |
+
gr.Markdown(_L("# 大模型部署实例合集"))
|
20 |
+
with gr.Tab(_L("API 部署聚合")):
|
21 |
LLM_APIs()
|
22 |
|
23 |
+
with gr.Tab(_L("真实 DeepSeek R1 Qwen 7B 模型")):
|
24 |
DeepSeek_R1_Qwen_7B()
|
25 |
|
26 |
demo.launch()
|
apis.py → modules/apis.py
RENAMED
@@ -1,30 +1,35 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from openai import OpenAI
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
api_key,
|
13 |
-
max_tk,
|
14 |
-
temp,
|
15 |
-
top_p,
|
16 |
-
):
|
17 |
-
if not api_key:
|
18 |
-
return "Please set valid api keys in settings first."
|
19 |
-
|
20 |
-
# Format history with a given chat template
|
21 |
-
msgs = [{"role": "system", "content": system_prompt}]
|
22 |
-
for user, assistant in history:
|
23 |
-
msgs.append({"role": "user", "content": user})
|
24 |
-
msgs.append({"role": "system", "content": assistant})
|
25 |
-
|
26 |
-
msgs.append({"role": "user", "content": message})
|
27 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
client = OpenAI(api_key=api_key, base_url=api_url)
|
29 |
response = client.chat.completions.create(
|
30 |
model=model,
|
@@ -41,16 +46,7 @@ def predict(
|
|
41 |
return response
|
42 |
|
43 |
|
44 |
-
def deepseek(
|
45 |
-
message,
|
46 |
-
history,
|
47 |
-
model,
|
48 |
-
api_key,
|
49 |
-
system_prompt,
|
50 |
-
max_tk,
|
51 |
-
temp,
|
52 |
-
top_p,
|
53 |
-
):
|
54 |
response = predict(
|
55 |
message,
|
56 |
history,
|
@@ -68,16 +64,7 @@ def deepseek(
|
|
68 |
yield "".join(outputs)
|
69 |
|
70 |
|
71 |
-
def kimi(
|
72 |
-
message,
|
73 |
-
history,
|
74 |
-
model,
|
75 |
-
api_key,
|
76 |
-
system_prompt,
|
77 |
-
max_tk,
|
78 |
-
temp,
|
79 |
-
top_p,
|
80 |
-
):
|
81 |
response = predict(
|
82 |
message,
|
83 |
history,
|
@@ -96,26 +83,26 @@ def kimi(
|
|
96 |
|
97 |
|
98 |
def LLM_APIs():
|
99 |
-
with gr.Blocks() as
|
100 |
with gr.Tab("DeepSeek"):
|
101 |
-
with gr.Accordion(label="⚙️
|
102 |
ds_model = gr.Dropdown(
|
103 |
choices=["deepseek-chat", "deepseek-reasoner"],
|
104 |
value="deepseek-chat",
|
105 |
-
label="
|
106 |
)
|
107 |
ds_key = gr.Textbox(
|
108 |
os.getenv("ds_api_key"),
|
109 |
type="password",
|
110 |
-
label="API
|
111 |
)
|
112 |
ds_sys = gr.Textbox(
|
113 |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
114 |
-
label="
|
115 |
)
|
116 |
-
ds_maxtk = gr.Slider(0, 32000, 10000, label="
|
117 |
-
ds_temp = gr.Slider(0, 1, 0.3, label="
|
118 |
-
ds_topp = gr.Slider(0, 1, 0.95, label="Top
|
119 |
|
120 |
gr.ChatInterface(
|
121 |
deepseek,
|
@@ -130,24 +117,24 @@ def LLM_APIs():
|
|
130 |
)
|
131 |
|
132 |
with gr.Tab("Kimi"):
|
133 |
-
with gr.Accordion(label="⚙️
|
134 |
kimi_model = gr.Dropdown(
|
135 |
choices=["moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"],
|
136 |
value="moonshot-v1-32k",
|
137 |
-
label="
|
138 |
)
|
139 |
kimi_key = gr.Textbox(
|
140 |
os.getenv("kimi_api_key"),
|
141 |
type="password",
|
142 |
-
label="API
|
143 |
)
|
144 |
kimi_sys = gr.Textbox(
|
145 |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
146 |
-
label="
|
147 |
)
|
148 |
-
kimi_maxtk = gr.Slider(0, 32000, 10000, label="
|
149 |
-
kimi_temp = gr.Slider(0, 1, 0.3, label="
|
150 |
-
kimi_topp = gr.Slider(0, 1, 0.95, label="Top
|
151 |
|
152 |
gr.ChatInterface(
|
153 |
kimi,
|
@@ -161,4 +148,4 @@ def LLM_APIs():
|
|
161 |
],
|
162 |
)
|
163 |
|
164 |
-
return
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from openai import OpenAI
|
4 |
+
from utils import EN_US
|
5 |
|
6 |
+
ZH2EN = {
|
7 |
+
"请先在设置中配置有效 API 密钥": "Please set valid api keys in settings first.",
|
8 |
+
"⚙️ 设置": "⚙️ Settings",
|
9 |
+
"模型选择": "Select a model",
|
10 |
+
"API 密钥": "API key",
|
11 |
+
"系统提示词": "System prompt",
|
12 |
+
"最大 token 数": "Max new tokens",
|
13 |
+
"温度参数": "Temperature",
|
14 |
+
"Top-P 采样": "Top P sampling",
|
15 |
+
}
|
16 |
|
17 |
+
|
18 |
+
def _L(zh_txt: str):
|
19 |
+
return ZH2EN[zh_txt] if EN_US else zh_txt
|
20 |
+
|
21 |
+
|
22 |
+
def predict(msg, history, system_prompt, model, api_url, api_key, max_tk, temp, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
+
if not api_key:
|
25 |
+
raise ValueError(_L("请先在设置中配置有效 API 密钥"))
|
26 |
+
|
27 |
+
msgs = [{"role": "system", "content": system_prompt}]
|
28 |
+
for user, assistant in history:
|
29 |
+
msgs.append({"role": "user", "content": user})
|
30 |
+
msgs.append({"role": "system", "content": assistant})
|
31 |
+
|
32 |
+
msgs.append({"role": "user", "content": msg})
|
33 |
client = OpenAI(api_key=api_key, base_url=api_url)
|
34 |
response = client.chat.completions.create(
|
35 |
model=model,
|
|
|
46 |
return response
|
47 |
|
48 |
|
49 |
+
def deepseek(message, history, model, api_key, system_prompt, max_tk, temp, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
response = predict(
|
51 |
message,
|
52 |
history,
|
|
|
64 |
yield "".join(outputs)
|
65 |
|
66 |
|
67 |
+
def kimi(message, history, model, api_key, system_prompt, max_tk, temp, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
response = predict(
|
69 |
message,
|
70 |
history,
|
|
|
83 |
|
84 |
|
85 |
def LLM_APIs():
|
86 |
+
with gr.Blocks() as apis:
|
87 |
with gr.Tab("DeepSeek"):
|
88 |
+
with gr.Accordion(label=_L("⚙️ 设置"), open=False) as ds_acc:
|
89 |
ds_model = gr.Dropdown(
|
90 |
choices=["deepseek-chat", "deepseek-reasoner"],
|
91 |
value="deepseek-chat",
|
92 |
+
label=_L("模型选择"),
|
93 |
)
|
94 |
ds_key = gr.Textbox(
|
95 |
os.getenv("ds_api_key"),
|
96 |
type="password",
|
97 |
+
label=_L("API 密钥"),
|
98 |
)
|
99 |
ds_sys = gr.Textbox(
|
100 |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
101 |
+
label=_L("系统提示词"),
|
102 |
)
|
103 |
+
ds_maxtk = gr.Slider(0, 32000, 10000, label=_L("最大 token 数"))
|
104 |
+
ds_temp = gr.Slider(0, 1, 0.3, label=_L("温度参数"))
|
105 |
+
ds_topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样"))
|
106 |
|
107 |
gr.ChatInterface(
|
108 |
deepseek,
|
|
|
117 |
)
|
118 |
|
119 |
with gr.Tab("Kimi"):
|
120 |
+
with gr.Accordion(label=_L("⚙️ 设置"), open=False) as kimi_acc:
|
121 |
kimi_model = gr.Dropdown(
|
122 |
choices=["moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"],
|
123 |
value="moonshot-v1-32k",
|
124 |
+
label=_L("模型选择"),
|
125 |
)
|
126 |
kimi_key = gr.Textbox(
|
127 |
os.getenv("kimi_api_key"),
|
128 |
type="password",
|
129 |
+
label=_L("API 密钥"),
|
130 |
)
|
131 |
kimi_sys = gr.Textbox(
|
132 |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
133 |
+
label=_L("系统提示词"),
|
134 |
)
|
135 |
+
kimi_maxtk = gr.Slider(0, 32000, 10000, label=_L("最大 token 数"))
|
136 |
+
kimi_temp = gr.Slider(0, 1, 0.3, label=_L("温度参数"))
|
137 |
+
kimi_topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样"))
|
138 |
|
139 |
gr.ChatInterface(
|
140 |
kimi,
|
|
|
148 |
],
|
149 |
)
|
150 |
|
151 |
+
return apis.queue()
|
deepseek.py → modules/deepseek.py
RENAMED
@@ -1,41 +1,59 @@
|
|
1 |
import torch
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from threading import Thread
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
|
8 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
9 |
CONTEXT_LENGTH = 16000
|
10 |
-
DESCRIPTION =
|
|
|
|
|
|
|
|
|
11 |
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
if device == torch.device("cuda"):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
top_k,
|
25 |
-
repetition_penalty,
|
26 |
-
top_p,
|
27 |
-
):
|
28 |
# Format history with a given chat template
|
29 |
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"]
|
30 |
-
instruction = "<|im_start|>system\n" +
|
31 |
for user, assistant in history:
|
32 |
instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n"
|
33 |
|
34 |
-
instruction += f"<|im_start|>user\n{
|
35 |
try:
|
36 |
if device == torch.device("cpu"):
|
37 |
raise EnvironmentError(
|
38 |
-
"
|
39 |
)
|
40 |
|
41 |
streamer = TextIteratorStreamer(
|
@@ -54,10 +72,10 @@ def predict(
|
|
54 |
attention_mask=attention_mask.to(device),
|
55 |
streamer=streamer,
|
56 |
do_sample=True,
|
57 |
-
temperature=
|
58 |
-
max_new_tokens=
|
59 |
top_k=top_k,
|
60 |
-
repetition_penalty=
|
61 |
top_p=top_p,
|
62 |
)
|
63 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
@@ -76,16 +94,16 @@ def predict(
|
|
76 |
|
77 |
|
78 |
def DeepSeek_R1_Qwen_7B():
|
79 |
-
with gr.Accordion(label="⚙️
|
80 |
prompt = gr.Textbox(
|
81 |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
82 |
-
label="
|
83 |
)
|
84 |
-
temper = gr.Slider(0, 1, 0.6, label="
|
85 |
-
maxtoken = gr.Slider(0, 32000, 10000, label="
|
86 |
-
topk = gr.Slider(1, 80, 40, label="Top
|
87 |
-
repet = gr.Slider(0, 2, 1.1, label="
|
88 |
-
topp = gr.Slider(0, 1, 0.95, label="Top
|
89 |
|
90 |
return gr.ChatInterface(
|
91 |
predict,
|
|
|
1 |
import torch
|
2 |
+
import modelscope
|
3 |
+
import huggingface_hub
|
4 |
import gradio as gr
|
5 |
from threading import Thread
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
7 |
+
from utils import EN_US
|
8 |
+
|
9 |
+
ZH2EN = {
|
10 |
+
"有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试": "If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment",
|
11 |
+
"⚙️ 参数设置": "⚙️ Parameters",
|
12 |
+
"系统提示词": "System prompt",
|
13 |
+
"最大 token 数": "Max new tokens",
|
14 |
+
"温度参数": "Temperature",
|
15 |
+
"Top-K 采样": "Top K sampling",
|
16 |
+
"Top-P 采样": "Top P sampling",
|
17 |
+
"重复性惩罚": "Repetition penalty",
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def _L(zh_txt: str):
|
22 |
+
return ZH2EN[zh_txt] if EN_US else zh_txt
|
23 |
|
24 |
|
25 |
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
|
26 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
27 |
CONTEXT_LENGTH = 16000
|
28 |
+
DESCRIPTION = (
|
29 |
+
f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment"
|
30 |
+
if EN_US
|
31 |
+
else f"当前仅提供 {MODEL_NAME} 模型的 ModelScope 版部署实例,有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试"
|
32 |
+
)
|
33 |
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
if device == torch.device("cuda"):
|
36 |
+
MODEL_DIR = (
|
37 |
+
huggingface_hub.snapshot_download(MODEL_ID, cache_dir="./__pycache__")
|
38 |
+
if EN_US
|
39 |
+
else modelscope.snapshot_download(MODEL_ID, cache_dir="./__pycache__")
|
40 |
+
)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, device_map="auto")
|
43 |
+
|
44 |
+
|
45 |
+
def predict(msg, history, prompt, temper, max_tokens, top_k, repeat_penalty, top_p):
|
|
|
|
|
|
|
|
|
46 |
# Format history with a given chat template
|
47 |
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"]
|
48 |
+
instruction = "<|im_start|>system\n" + prompt + "\n<|im_end|>\n"
|
49 |
for user, assistant in history:
|
50 |
instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n"
|
51 |
|
52 |
+
instruction += f"<|im_start|>user\n{msg}\n<|im_end|>\n<|im_start|>assistant\n"
|
53 |
try:
|
54 |
if device == torch.device("cpu"):
|
55 |
raise EnvironmentError(
|
56 |
+
_L("有算力的可自行克隆至本地或复刻至购买了 GPU 环境的账号测试")
|
57 |
)
|
58 |
|
59 |
streamer = TextIteratorStreamer(
|
|
|
72 |
attention_mask=attention_mask.to(device),
|
73 |
streamer=streamer,
|
74 |
do_sample=True,
|
75 |
+
temperature=temper,
|
76 |
+
max_new_tokens=max_tokens,
|
77 |
top_k=top_k,
|
78 |
+
repetition_penalty=repeat_penalty,
|
79 |
top_p=top_p,
|
80 |
)
|
81 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
94 |
|
95 |
|
96 |
def DeepSeek_R1_Qwen_7B():
|
97 |
+
with gr.Accordion(label=_L("⚙️ 参数设置"), open=False) as ds_acc:
|
98 |
prompt = gr.Textbox(
|
99 |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
100 |
+
label=_L("系统提示词"),
|
101 |
)
|
102 |
+
temper = gr.Slider(0, 1, 0.6, label=_L("温度参数"))
|
103 |
+
maxtoken = gr.Slider(0, 32000, 10000, label=_L("最大 token 数"))
|
104 |
+
topk = gr.Slider(1, 80, 40, label=_L("Top-K 采样"))
|
105 |
+
repet = gr.Slider(0, 2, 1.1, label=_L("重复性惩罚"))
|
106 |
+
topp = gr.Slider(0, 1, 0.95, label=_L("Top-P 采样"))
|
107 |
|
108 |
return gr.ChatInterface(
|
109 |
predict,
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
torch
|
|
|
2 |
openai
|
3 |
accelerate
|
4 |
-
|
5 |
-
huggingface_hub==0.25.2
|
|
|
1 |
+
torch==2.6.0+cu118
|
2 |
+
-f https://mirrors.aliyun.com/pytorch-wheels/cu118
|
3 |
openai
|
4 |
accelerate
|
5 |
+
modelscope[framework]==1.24.0
|
|
utils.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
EN_US = os.getenv("LANG") != "zh_CN.UTF-8"
|