Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
-
import torch
|
4 |
from PIL import Image
|
5 |
-
|
|
|
|
|
6 |
import spaces
|
7 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline
|
8 |
-
|
9 |
-
#
|
10 |
-
# Load the two SDXL pipelines (base + refiner) globally, so they only load once.
|
11 |
-
#
|
12 |
-
BASE_MODEL_ID = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
-
REFINER_MODEL_ID = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
14 |
|
|
|
15 |
dtype = torch.float16
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
# Helper functions
|
23 |
-
#
|
24 |
-
def sanitize_prompt(prompt: str) -> str:
|
25 |
-
# Simple sanitation: remove suspicious characters
|
26 |
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
27 |
return allowed_chars.sub("", prompt)
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
Resizes the image so that both width/height <= max_dim,
|
32 |
-
and each dimension is a multiple of 64.
|
33 |
-
(SDXL often uses 1024x1024. You can do multiples of 128 if you prefer.)
|
34 |
-
"""
|
35 |
-
w, h = image.size
|
36 |
-
|
37 |
-
# If image is bigger than max_dim in any dimension, scale it down
|
38 |
-
ratio = min(max_dim / w, max_dim / h, 1.0)
|
39 |
-
new_w = int(w * ratio)
|
40 |
-
new_h = int(h * ratio)
|
41 |
-
|
42 |
-
# Round down to multiples of 64 for best results in SDXL
|
43 |
-
new_w = new_w - (new_w % 64)
|
44 |
-
new_h = new_h - (new_h % 64)
|
45 |
-
|
46 |
-
new_w = max(new_w, 64)
|
47 |
-
new_h = max(new_h, 64)
|
48 |
-
return image.resize((new_w, new_h), Image.LANCZOS)
|
49 |
-
|
50 |
-
@spaces.GPU(duration=240) # Increase time if needed (SDXL can be slow)
|
51 |
-
def run_img2img_sdxl(
|
52 |
-
init_image,
|
53 |
-
prompt: str,
|
54 |
-
strength: float,
|
55 |
-
seed: int,
|
56 |
-
steps_base: int,
|
57 |
-
steps_refiner: int,
|
58 |
-
):
|
59 |
-
"""
|
60 |
-
Runs a two-step SDXL (base + refiner) pass for high-quality img2img.
|
61 |
-
"""
|
62 |
-
if init_image is None:
|
63 |
-
print("No input image provided.")
|
64 |
return None
|
65 |
-
|
66 |
-
# Clean up prompt
|
67 |
-
prompt = sanitize_prompt(prompt)
|
68 |
-
|
69 |
-
# Ensure reproducibility
|
70 |
generator = torch.Generator(device).manual_seed(seed)
|
71 |
-
|
72 |
-
# Possibly resize the input to a smaller multiple-of-64 dimension
|
73 |
-
# (1024x1024 or smaller is typical for SDXL)
|
74 |
-
init_image = resize_to_multiple_of_64(init_image, max_dim=1024)
|
75 |
-
|
76 |
-
# 1) Base pass
|
77 |
-
base_output = pipe_base(
|
78 |
prompt=prompt,
|
79 |
-
image=
|
80 |
strength=strength,
|
81 |
-
guidance_scale=
|
82 |
-
num_inference_steps=
|
83 |
generator=generator
|
84 |
-
)
|
85 |
-
base_image = base_output.images[0]
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
prompt=prompt,
|
92 |
-
image=base_image,
|
93 |
-
strength=0.0, # strictly refine
|
94 |
-
guidance_scale=9.0,
|
95 |
-
num_inference_steps=steps_refiner,
|
96 |
-
generator=generator
|
97 |
-
)
|
98 |
-
final_image = refiner_output.images[0]
|
99 |
-
|
100 |
-
return final_image
|
101 |
|
102 |
-
|
103 |
-
#
|
104 |
-
# Gradio UI
|
105 |
-
#
|
106 |
css = """
|
107 |
#col-left {
|
108 |
margin: 0 auto;
|
@@ -115,34 +49,32 @@ css = """
|
|
115 |
"""
|
116 |
|
117 |
with gr.Blocks(css=css) as demo:
|
118 |
-
gr.Markdown("##
|
119 |
|
120 |
with gr.Row():
|
121 |
with gr.Column():
|
122 |
-
|
123 |
-
label="
|
124 |
type="pil",
|
125 |
image_mode="RGB",
|
126 |
height=512
|
127 |
)
|
128 |
-
|
129 |
-
label="Prompt",
|
130 |
-
placeholder="Describe
|
131 |
)
|
132 |
-
|
133 |
-
with gr.Accordion("Advanced
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
with gr.Column():
|
140 |
-
result_image = gr.Image(label="
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
inputs=[init_image, prompt, strength, seed, steps_base, steps_refiner],
|
146 |
outputs=[result_image]
|
147 |
)
|
148 |
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
|
|
3 |
from PIL import Image
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
7 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
model_id = "SG161222/Realistic_Vision_V2.0"
|
10 |
dtype = torch.float16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Load the pipeline once at startup
|
14 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
15 |
+
model_id, torch_dtype=dtype
|
16 |
+
).to(device)
|
17 |
|
18 |
+
def sanitize_prompt(prompt):
|
|
|
|
|
|
|
|
|
19 |
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
20 |
return allowed_chars.sub("", prompt)
|
21 |
|
22 |
+
def process_img2img(img, prompt, strength, seed, steps):
|
23 |
+
if img is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
return None
|
|
|
|
|
|
|
|
|
|
|
25 |
generator = torch.Generator(device).manual_seed(seed)
|
26 |
+
return pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
prompt=prompt,
|
28 |
+
image=img,
|
29 |
strength=strength,
|
30 |
+
guidance_scale=7.5, # typical for Realistic Vision
|
31 |
+
num_inference_steps=steps,
|
32 |
generator=generator
|
33 |
+
).images[0]
|
|
|
34 |
|
35 |
+
@spaces.GPU(duration=120)
|
36 |
+
def run_app_inference(image, prompt, strength, seed, steps, progress=gr.Progress(track_tqdm=True)):
|
37 |
+
progress(0, desc="Starting Inference")
|
38 |
+
return process_img2img(image, prompt, strength, seed, steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
40 |
css = """
|
41 |
#col-left {
|
42 |
margin: 0 auto;
|
|
|
49 |
"""
|
50 |
|
51 |
with gr.Blocks(css=css) as demo:
|
52 |
+
gr.Markdown("## Realistic Vision v2.0 Img2Img — No License Acceptance Required")
|
53 |
|
54 |
with gr.Row():
|
55 |
with gr.Column():
|
56 |
+
image_input = gr.Image(
|
57 |
+
label="Initial Image (Img2Img)",
|
58 |
type="pil",
|
59 |
image_mode="RGB",
|
60 |
height=512
|
61 |
)
|
62 |
+
prompt_input = gr.Textbox(
|
63 |
+
label="Prompt",
|
64 |
+
placeholder="Describe desired result"
|
65 |
)
|
66 |
+
generate_button = gr.Button("Generate")
|
67 |
+
with gr.Accordion("Advanced Settings", open=False):
|
68 |
+
strength_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Strength")
|
69 |
+
seed_box = gr.Number(value=0, label="Seed", precision=0)
|
70 |
+
steps_box = gr.Slider(1, 100, value=30, step=1, label="Steps")
|
71 |
+
|
|
|
72 |
with gr.Column():
|
73 |
+
result_image = gr.Image(label="Output", height=512)
|
74 |
|
75 |
+
generate_button.click(
|
76 |
+
fn=run_app_inference,
|
77 |
+
inputs=[image_input, prompt_input, strength_slider, seed_box, steps_box],
|
|
|
78 |
outputs=[result_image]
|
79 |
)
|
80 |
|