Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import re
|
4 |
-
from PIL import Image
|
5 |
-
import io
|
6 |
-
import base64
|
7 |
import os
|
|
|
8 |
import json
|
|
|
|
|
|
|
9 |
import numpy as np
|
10 |
import torch
|
|
|
|
|
11 |
from diffusers import FluxImg2ImgPipeline
|
12 |
from cryptography.fernet import Fernet
|
13 |
from cryptography.hazmat.primitives import hashes
|
14 |
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
15 |
|
|
|
|
|
|
|
16 |
dtype = torch.bfloat16
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
-
pipe = FluxImg2ImgPipeline.from_pretrained(
|
|
|
|
|
|
|
20 |
|
21 |
def generate_key(password, salt=None):
|
22 |
if salt is None:
|
@@ -30,16 +36,19 @@ def generate_key(password, salt=None):
|
|
30 |
key = base64.urlsafe_b64encode(kdf.derive(password.encode()))
|
31 |
return key, salt
|
32 |
|
33 |
-
def encrypt_image(image):
|
|
|
|
|
|
|
|
|
34 |
# Convert PIL Image to bytes
|
35 |
img_byte_arr = io.BytesIO()
|
36 |
image.save(img_byte_arr, format='PNG')
|
37 |
img_byte_arr = img_byte_arr.getvalue()
|
38 |
|
39 |
-
# Generate key for encryption using the
|
40 |
-
key, salt = generate_key(
|
41 |
cipher = Fernet(key)
|
42 |
-
|
43 |
encrypted_data = cipher.encrypt(img_byte_arr)
|
44 |
|
45 |
return {
|
@@ -49,15 +58,17 @@ def encrypt_image(image):
|
|
49 |
'original_height': image.height
|
50 |
}
|
51 |
|
52 |
-
def decrypt_image(encrypted_data_dict):
|
|
|
|
|
|
|
53 |
# Extract the encrypted data and salt
|
54 |
encrypted_data = base64.b64decode(encrypted_data_dict['encrypted_data'])
|
55 |
salt = base64.b64decode(encrypted_data_dict['salt'])
|
56 |
|
57 |
-
# Regenerate the key using the
|
58 |
-
key, _ = generate_key(
|
59 |
cipher = Fernet(key)
|
60 |
-
|
61 |
decrypted_data = cipher.decrypt(encrypted_data)
|
62 |
image = Image.open(io.BytesIO(decrypted_data))
|
63 |
return image
|
@@ -72,7 +83,7 @@ def convert_to_fit_size(original_width_and_height, maximum_size=2048):
|
|
72 |
width, height = original_width_and_height
|
73 |
if width <= maximum_size and height <= maximum_size:
|
74 |
return width, height
|
75 |
-
|
76 |
if width > height:
|
77 |
scaling_factor = maximum_size / width
|
78 |
else:
|
@@ -88,19 +99,18 @@ def adjust_to_multiple_of_32(width: int, height: int):
|
|
88 |
return width, height
|
89 |
|
90 |
@spaces.GPU(duration=120)
|
91 |
-
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4,
|
92 |
-
encrypt_password="default_password", progress=gr.Progress(track_tqdm=True)):
|
93 |
progress(0, desc="Starting")
|
94 |
|
95 |
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
|
96 |
if image is None:
|
97 |
-
print("
|
98 |
return None
|
99 |
generator = torch.Generator(device).manual_seed(seed)
|
100 |
fit_width, fit_height = convert_to_fit_size(image.size)
|
101 |
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
102 |
image = image.resize((width, height), Image.LANCZOS)
|
103 |
-
|
104 |
output = pipe(
|
105 |
prompt=prompt,
|
106 |
image=image,
|
@@ -112,28 +122,26 @@ def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step
|
|
112 |
num_inference_steps=num_inference_steps,
|
113 |
max_sequence_length=256
|
114 |
)
|
115 |
-
|
116 |
pil_image = output.images[0]
|
117 |
new_width, new_height = pil_image.size
|
118 |
-
|
119 |
if (new_width != fit_width) or (new_height != fit_height):
|
120 |
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
121 |
return resized_image
|
122 |
return pil_image
|
123 |
-
|
124 |
output = process_img2img(image, prompt, strength, seed, inference_step)
|
125 |
-
|
126 |
-
# Encrypt the output image
|
127 |
if output is not None:
|
128 |
-
encrypted_output = encrypt_image(output
|
129 |
-
# Instead of returning a gray placeholder, show the real pipeline result:
|
130 |
return {
|
131 |
-
"display_image": output,
|
132 |
"encrypted_data": encrypted_output
|
133 |
}
|
134 |
return None
|
135 |
|
136 |
-
|
137 |
def save_encrypted_image(encrypted_data, filename="encrypted_image.enc"):
|
138 |
with open(filename, 'w') as f:
|
139 |
json.dump(encrypted_data, f)
|
@@ -157,7 +165,7 @@ css = """
|
|
157 |
display: flex;
|
158 |
align-items: center;
|
159 |
justify-content: center;
|
160 |
-
gap:10px
|
161 |
}
|
162 |
|
163 |
.image {
|
@@ -182,7 +190,7 @@ css = """
|
|
182 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
183 |
# Store encrypted data in a state variable
|
184 |
encrypted_output_state = gr.State(None)
|
185 |
-
|
186 |
with gr.Column():
|
187 |
gr.HTML(read_file("demo_header.html"))
|
188 |
gr.HTML(read_file("demo_tools.html"))
|
@@ -204,9 +212,7 @@ with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
204 |
placeholder="Your prompt (what you want in place of what is erased)",
|
205 |
elem_id="prompt"
|
206 |
)
|
207 |
-
|
208 |
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
209 |
-
|
210 |
with gr.Accordion(label="Advanced Settings", open=False):
|
211 |
with gr.Row(equal_height=True):
|
212 |
strength = gr.Number(
|
@@ -218,15 +224,8 @@ with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
218 |
inference_step = gr.Number(
|
219 |
value=4, minimum=1, step=4, label="Inference Steps"
|
220 |
)
|
221 |
-
encrypt_password = gr.Textbox(
|
222 |
-
label="Encryption Password",
|
223 |
-
value="default_password",
|
224 |
-
type="password"
|
225 |
-
)
|
226 |
id_input = gr.Text(label="Name", visible=False)
|
227 |
-
|
228 |
with gr.Column():
|
229 |
-
# Display placeholder image
|
230 |
image_out = gr.Image(
|
231 |
height=800,
|
232 |
sources=[],
|
@@ -252,31 +251,29 @@ with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
252 |
],
|
253 |
inputs=[image, image_out, prompt],
|
254 |
)
|
255 |
-
|
256 |
gr.HTML(read_file("demo_footer.html"))
|
257 |
-
|
258 |
# Process images and encrypt outputs
|
259 |
-
def handle_image_generation(image, prompt, strength, seed, inference_step
|
260 |
-
result = process_images(image, prompt, strength, seed, inference_step
|
261 |
if result:
|
262 |
return result["display_image"], result["encrypted_data"]
|
263 |
return None, None
|
264 |
|
265 |
-
# >>>> CHANGED: Use .click() and .submit() with api_name
|
266 |
btn.click(
|
267 |
fn=handle_image_generation,
|
268 |
-
inputs=[image, prompt, strength, seed, inference_step
|
269 |
outputs=[image_out, encrypted_output_state],
|
270 |
-
api_name="/process_images"
|
271 |
)
|
272 |
|
273 |
prompt.submit(
|
274 |
fn=handle_image_generation,
|
275 |
-
inputs=[image, prompt, strength, seed, inference_step
|
276 |
outputs=[image_out, encrypted_output_state],
|
277 |
-
api_name="/process_images"
|
278 |
)
|
279 |
-
# <<<< END CHANGE
|
280 |
|
281 |
def handle_save_encrypted(encrypted_data):
|
282 |
if encrypted_data:
|
@@ -286,7 +283,7 @@ with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
|
286 |
json.dump(encrypted_data, f)
|
287 |
return f"Encrypted image saved to {path}"
|
288 |
return "No encrypted image to save"
|
289 |
-
|
290 |
save_btn.click(
|
291 |
fn=handle_save_encrypted,
|
292 |
inputs=[encrypted_output_state],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import io
|
3 |
import json
|
4 |
+
import base64
|
5 |
+
import re
|
6 |
+
from PIL import Image
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
+
import gradio as gr
|
10 |
+
import spaces
|
11 |
from diffusers import FluxImg2ImgPipeline
|
12 |
from cryptography.fernet import Fernet
|
13 |
from cryptography.hazmat.primitives import hashes
|
14 |
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
15 |
|
16 |
+
# Retrieve the encryption key from the environment (set in Hugging Face Secrets Manager)
|
17 |
+
ENCRYPTION_KEY = os.environ.get("key", "FAKEFALLBACKKEY_FOR_LOCAL_TESTING")
|
18 |
+
|
19 |
dtype = torch.bfloat16
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
|
22 |
+
pipe = FluxImg2ImgPipeline.from_pretrained(
|
23 |
+
"black-forest-labs/FLUX.1-schnell",
|
24 |
+
torch_dtype=torch.bfloat16
|
25 |
+
).to(device)
|
26 |
|
27 |
def generate_key(password, salt=None):
|
28 |
if salt is None:
|
|
|
36 |
key = base64.urlsafe_b64encode(kdf.derive(password.encode()))
|
37 |
return key, salt
|
38 |
|
39 |
+
def encrypt_image(image, password=None):
|
40 |
+
# Use the secure key if no override is provided
|
41 |
+
if password is None:
|
42 |
+
password = ENCRYPTION_KEY
|
43 |
+
|
44 |
# Convert PIL Image to bytes
|
45 |
img_byte_arr = io.BytesIO()
|
46 |
image.save(img_byte_arr, format='PNG')
|
47 |
img_byte_arr = img_byte_arr.getvalue()
|
48 |
|
49 |
+
# Generate key for encryption using the secure password
|
50 |
+
key, salt = generate_key(password)
|
51 |
cipher = Fernet(key)
|
|
|
52 |
encrypted_data = cipher.encrypt(img_byte_arr)
|
53 |
|
54 |
return {
|
|
|
58 |
'original_height': image.height
|
59 |
}
|
60 |
|
61 |
+
def decrypt_image(encrypted_data_dict, password=None):
|
62 |
+
if password is None:
|
63 |
+
password = ENCRYPTION_KEY
|
64 |
+
|
65 |
# Extract the encrypted data and salt
|
66 |
encrypted_data = base64.b64decode(encrypted_data_dict['encrypted_data'])
|
67 |
salt = base64.b64decode(encrypted_data_dict['salt'])
|
68 |
|
69 |
+
# Regenerate the key using the secure password and salt
|
70 |
+
key, _ = generate_key(password, salt)
|
71 |
cipher = Fernet(key)
|
|
|
72 |
decrypted_data = cipher.decrypt(encrypted_data)
|
73 |
image = Image.open(io.BytesIO(decrypted_data))
|
74 |
return image
|
|
|
83 |
width, height = original_width_and_height
|
84 |
if width <= maximum_size and height <= maximum_size:
|
85 |
return width, height
|
86 |
+
|
87 |
if width > height:
|
88 |
scaling_factor = maximum_size / width
|
89 |
else:
|
|
|
99 |
return width, height
|
100 |
|
101 |
@spaces.GPU(duration=120)
|
102 |
+
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
103 |
progress(0, desc="Starting")
|
104 |
|
105 |
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
|
106 |
if image is None:
|
107 |
+
print("Empty input image returned")
|
108 |
return None
|
109 |
generator = torch.Generator(device).manual_seed(seed)
|
110 |
fit_width, fit_height = convert_to_fit_size(image.size)
|
111 |
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
112 |
image = image.resize((width, height), Image.LANCZOS)
|
113 |
+
|
114 |
output = pipe(
|
115 |
prompt=prompt,
|
116 |
image=image,
|
|
|
122 |
num_inference_steps=num_inference_steps,
|
123 |
max_sequence_length=256
|
124 |
)
|
125 |
+
|
126 |
pil_image = output.images[0]
|
127 |
new_width, new_height = pil_image.size
|
128 |
+
|
129 |
if (new_width != fit_width) or (new_height != fit_height):
|
130 |
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
131 |
return resized_image
|
132 |
return pil_image
|
133 |
+
|
134 |
output = process_img2img(image, prompt, strength, seed, inference_step)
|
135 |
+
|
136 |
+
# Encrypt the output image using the secure key
|
137 |
if output is not None:
|
138 |
+
encrypted_output = encrypt_image(output)
|
|
|
139 |
return {
|
140 |
+
"display_image": output,
|
141 |
"encrypted_data": encrypted_output
|
142 |
}
|
143 |
return None
|
144 |
|
|
|
145 |
def save_encrypted_image(encrypted_data, filename="encrypted_image.enc"):
|
146 |
with open(filename, 'w') as f:
|
147 |
json.dump(encrypted_data, f)
|
|
|
165 |
display: flex;
|
166 |
align-items: center;
|
167 |
justify-content: center;
|
168 |
+
gap:10px;
|
169 |
}
|
170 |
|
171 |
.image {
|
|
|
190 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
191 |
# Store encrypted data in a state variable
|
192 |
encrypted_output_state = gr.State(None)
|
193 |
+
|
194 |
with gr.Column():
|
195 |
gr.HTML(read_file("demo_header.html"))
|
196 |
gr.HTML(read_file("demo_tools.html"))
|
|
|
212 |
placeholder="Your prompt (what you want in place of what is erased)",
|
213 |
elem_id="prompt"
|
214 |
)
|
|
|
215 |
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
|
|
216 |
with gr.Accordion(label="Advanced Settings", open=False):
|
217 |
with gr.Row(equal_height=True):
|
218 |
strength = gr.Number(
|
|
|
224 |
inference_step = gr.Number(
|
225 |
value=4, minimum=1, step=4, label="Inference Steps"
|
226 |
)
|
|
|
|
|
|
|
|
|
|
|
227 |
id_input = gr.Text(label="Name", visible=False)
|
|
|
228 |
with gr.Column():
|
|
|
229 |
image_out = gr.Image(
|
230 |
height=800,
|
231 |
sources=[],
|
|
|
251 |
],
|
252 |
inputs=[image, image_out, prompt],
|
253 |
)
|
254 |
+
|
255 |
gr.HTML(read_file("demo_footer.html"))
|
256 |
+
|
257 |
# Process images and encrypt outputs
|
258 |
+
def handle_image_generation(image, prompt, strength, seed, inference_step):
|
259 |
+
result = process_images(image, prompt, strength, seed, inference_step)
|
260 |
if result:
|
261 |
return result["display_image"], result["encrypted_data"]
|
262 |
return None, None
|
263 |
|
|
|
264 |
btn.click(
|
265 |
fn=handle_image_generation,
|
266 |
+
inputs=[image, prompt, strength, seed, inference_step],
|
267 |
outputs=[image_out, encrypted_output_state],
|
268 |
+
api_name="/process_images"
|
269 |
)
|
270 |
|
271 |
prompt.submit(
|
272 |
fn=handle_image_generation,
|
273 |
+
inputs=[image, prompt, strength, seed, inference_step],
|
274 |
outputs=[image_out, encrypted_output_state],
|
275 |
+
api_name="/process_images"
|
276 |
)
|
|
|
277 |
|
278 |
def handle_save_encrypted(encrypted_data):
|
279 |
if encrypted_data:
|
|
|
283 |
json.dump(encrypted_data, f)
|
284 |
return f"Encrypted image saved to {path}"
|
285 |
return "No encrypted image to save"
|
286 |
+
|
287 |
save_btn.click(
|
288 |
fn=handle_save_encrypted,
|
289 |
inputs=[encrypted_output_state],
|