|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms as transforms
|
|
import torch
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import gradio as gr
|
|
|
|
|
|
class CNN(nn.Module):
|
|
def __init__(self, in_channels=1, num_classes=4):
|
|
super(CNN, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=3, stride=1, padding=1)
|
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
|
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
|
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
self.batch_norm1 = nn.BatchNorm2d(32)
|
|
self.batch_norm2 = nn.BatchNorm2d(64)
|
|
self.batch_norm3 = nn.BatchNorm2d(128)
|
|
|
|
self.dropout = nn.Dropout(0.5)
|
|
|
|
|
|
self.fc1 = nn.Linear(128 * (200 // 8) * (200 // 8), 256)
|
|
self.fc2 = nn.Linear(256, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.batch_norm1(self.conv1(x)))
|
|
x = self.pool(x)
|
|
|
|
x = F.relu(self.batch_norm2(self.conv2(x)))
|
|
x = self.pool(x)
|
|
|
|
x = F.relu(self.batch_norm3(self.conv3(x)))
|
|
x = self.pool(x)
|
|
|
|
x = x.view(x.shape[0], -1)
|
|
x = self.dropout(F.relu(self.fc1(x)))
|
|
x = self.fc2(x)
|
|
|
|
return x
|
|
|
|
|
|
model = CNN()
|
|
model.load_state_dict(
|
|
torch.load("gabriel_complex_modelo.pth", map_location=torch.device("cpu"))
|
|
)
|
|
|
|
|
|
def inference(model, imagen, device="cpu"):
|
|
label_mapping = {0: "C铆rculo", 1: "Tri谩ngulo", 2: "Cuadrado", 3: "Estrella"}
|
|
|
|
model.eval()
|
|
|
|
|
|
with torch.no_grad():
|
|
scores = model(imagen)
|
|
probabilities = torch.softmax(
|
|
scores, dim=1
|
|
)
|
|
_, prediction = scores.max(1)
|
|
label_predicho = prediction.item()
|
|
|
|
|
|
probabilities_dict = {
|
|
label_mapping[i]: float(probabilities[0, i]) for i in range(4)
|
|
}
|
|
|
|
return label_mapping[label_predicho], probabilities_dict
|
|
|
|
|
|
def predict(img):
|
|
image_array = img["composite"][:, :, 3]
|
|
image_array = 255 - image_array
|
|
|
|
image_tensor = torch.from_numpy(image_array).unsqueeze(0)
|
|
|
|
transform_to_gray = transforms.Compose(
|
|
[
|
|
transforms.Resize((200, 200)),
|
|
transforms.ConvertImageDtype(dtype=torch.float32),
|
|
]
|
|
)
|
|
|
|
image = transform_to_gray(image_tensor)
|
|
image = image.unsqueeze(0)
|
|
|
|
|
|
label_predict, probabilities = inference(model, image, device="cpu")
|
|
print(label_predict)
|
|
print(probabilities)
|
|
|
|
return probabilities
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
im = gr.Sketchpad(type="numpy", crop_size="1:1")
|
|
out = gr.Label()
|
|
|
|
im.change(predict, outputs=out, inputs=im, show_progress="hidden")
|
|
|
|
demo.launch(share=True, debug=False)
|
|
|