Spaces:
Sleeping
Sleeping
File size: 14,291 Bytes
3fc2ce9 3c32de9 ebe2b18 3c32de9 d6bd955 ebe2b18 3c32de9 5187bce 1a7861d 7ef4b83 1a7861d d6bd955 1a7861d d6bd955 1a7861d d6bd955 1a7861d 3743694 4a2f439 d6bd955 4a2f439 5163b6e 4a2f439 5163b6e 4a2f439 582d273 d6bd955 582d273 d6bd955 582d273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from fastapi import FastAPI
app = FastAPI()
from fastapi.middleware.cors import CORSMiddleware
origins = [
"*"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def greet_json():
return {"Hello": "World!"}
#--------------------------------------------------------------------------------------------------------------------
import os
import gdown
file_id = "1zhisRgRi2qBFX73VFhzh-Ho93MORQqVa"
output_dir = "./downloads"
output_file = "file.h5"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_path = os.path.join(output_dir, output_file)
url = f"https://drive.google.com/uc?id={file_id}"
try:
gdown.download(url, output_path, quiet=False)
print(f"File downloaded successfully to: {output_path}")
except Exception as e:
print(f"Error downloading file: {e}")
output_file = "file.h5"
file_path = os.path.join(output_dir, output_file)
#--------------------------------------------------------------------------------------------------------------------
file_id = "1wIaycDFGTF3e0PpAHKk-GLnxk4cMehOU"
output_dir = "./downloads"
output_file = "file2.h5"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_path = os.path.join(output_dir, output_file)
url = f"https://drive.google.com/uc?id={file_id}"
try:
gdown.download(url, output_path, quiet=False)
print(f"File downloaded successfully to: {output_path}")
except Exception as e:
print(f"Error downloading file: {e}")
output_file = "file2.h5"
file_path = os.path.join(output_dir, output_file)
if os.path.exists(file_path):
print(f"The file '{output_file}' exists at '{file_path}'.")
else:
print(f"The file '{output_file}' does not exist at '{file_path}'.")
#--------------------------------------------------------------------------------------------------------------------
import os
import numpy as np
import tensorflow as tf
import tensorflow
import librosa
import matplotlib.pyplot as plt
# import gradio as gr
import os
os.environ["TORCH_HOME"] = "/tmp/torch_cache"
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib_config"
os.environ["FONTCONFIG_PATH"] = "/tmp/fontconfig"
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout
from tensorflow.keras.optimizers import Adam
from transformers import pipeline
class UnifiedDeepfakeDetector:
def __init__(self):
self.input_shape = (224, 224, 3)
self.vgg_model = self.build_vgg16_model()
self.dense_model = tf.keras.models.load_model('downloads/file2.h5')
self.cnn_model = tf.keras.models.load_model('downloads/file.h5')
self.melody_machine = pipeline(model="MelodyMachine/Deepfake-audio-detection-V2")
def build_vgg16_model(self):
base_model = VGG16(weights='imagenet', include_top=False, input_shape=self.input_shape)
for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.3)(x)
output = Dense(1, activation='sigmoid')(x)
model = Model(inputs=base_model.input, outputs=output)
model.compile(optimizer=Adam(learning_rate=0.0001),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
def audio_to_spectrogram(self, file_path, plot=False):
try:
audio, sr = librosa.load(file_path, duration=5.0, sr=22050)
spectrogram = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=224, fmax=8000)
spectrogram_db = librosa.power_to_db(spectrogram, ref=np.max)
if plot:
plt.figure(figsize=(12, 6))
librosa.display.specshow(spectrogram_db, y_axis='mel', x_axis='time', cmap='viridis')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel Spectrogram Analysis')
plot_path = 'spectrogram_plot.png'
plt.savefig(plot_path, dpi=300, bbox_inches='tight')
plt.close()
return plot_path
spectrogram_norm = (spectrogram_db - spectrogram_db.min()) / (spectrogram_db.max() - spectrogram_db.min())
spectrogram_rgb = np.stack([spectrogram_norm]*3, axis=-1)
spectrogram_resized = tf.image.resize(spectrogram_rgb, (224, 224))
return preprocess_input(spectrogram_resized * 255)
except Exception as e:
print(f"Spectrogram error: {e}")
return None
def analyze_audio_rf(self, audio_path, model_choice="all"):
results = {}
plots = {}
r = []
audio_features = {}
try:
# Load audio and extract basic features
audio, sr = librosa.load(audio_path, res_type="kaiser_fast")
audio_features = {
"sample_rate": sr,
"duration": librosa.get_duration(y=audio, sr=sr),
"rms_energy": float(np.mean(librosa.feature.rms(y=audio))),
"zero_crossing_rate": float(np.mean(librosa.feature.zero_crossing_rate(y=audio)))
}
# VGG16 Analysis
if model_choice in ["VGG16", "all"]:
spec = self.audio_to_spectrogram(audio_path)
if spec is not None:
pred = self.vgg_model.predict(np.expand_dims(spec, axis=0))[0][0]
results["VGG16"] = {
"prediction": "FAKE" if pred > 0.5 else "REAL",
"confidence": float(pred if pred > 0.5 else 1 - pred),
"raw_score": float(pred)
}
plots["spectrogram"] = self.audio_to_spectrogram(audio_path, plot=True)
r.append("FAKE" if pred > 0.5 else "REAL")
# Dense Model Analysis
if model_choice in ["Dense", "all"]:
mfcc = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=40)
mfcc_scaled = np.mean(mfcc.T, axis=0).reshape(1, -1)
pred = self.dense_model.predict(mfcc_scaled)
results["Dense"] = {
"prediction": "FAKE" if np.argmax(pred[0]) == 0 else "REAL",
"confidence": float(np.max(pred[0])),
"raw_scores": pred[0].tolist()
}
r.append("FAKE" if np.argmax(pred[0]) == 0 else "REAL")
# CNN Model Analysis
if model_choice in ["CNN", "all"]:
mfcc = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=40)
mfcc_scaled = np.mean(mfcc.T, axis=0).reshape(None, 40, 1, 1)
pred = self.cnn_model.predict(mfcc_scaled)
results["CNN"] = {
"prediction": "FAKE" if np.argmax(pred[0]) == 0 else "REAL",
"confidence": float(np.max(pred[0])),
"raw_scores": pred[0].tolist()
}
r.append("FAKE" if np.argmax(pred[0]) == 0 else "REAL")
# Melody Machine Analysis
if model_choice in ["MelodyMachine", "all"]:
result = self.melody_machine(audio_path)
best_pred = max(result, key=lambda x: x['score'])
results["MelodyMachine"] = {
"prediction": best_pred['label'].upper(),
"confidence": float(best_pred['score']),
"all_predictions": result
}
r.append(best_pred['label'].upper())
return r
except Exception as e:
print(f"Analysis error: {e}")
return None, None, None
#--------------------------------------------------------------------------------------------------------------------
import torchaudio
import torch
import numpy as np
from scipy.stats import skew, kurtosis, median_abs_deviation
import os
import torch.nn.functional as F
import os
os.environ["TORCH_HOME"] = "/tmp/torch_cache"
from torchaudio.pipelines import WAV2VEC2_BASE
bundle = WAV2VEC2_BASE
model = bundle.get_model()
print("Model downloaded successfully!")
def extract_features(file_path):
if os.path.exists(file_path):
print(f"File successfully written: {file_path}")
else:
print("File writing failed.")
waveform, sample_rate = torchaudio.load(file_path)
if sample_rate != bundle.sample_rate:
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=bundle.sample_rate)(waveform)
with torch.inference_mode():
features, _ = model.extract_features(waveform)
pooled_features = []
for f in features:
if f.dim() == 3:
f = f.permute(0, 2, 1)
pooled_f = F.adaptive_avg_pool1d(f[0].unsqueeze(0), 1).squeeze(0)
pooled_features.append(pooled_f)
final_features = torch.cat(pooled_features, dim=0).numpy()
final_features = (final_features - np.mean(final_features)) / (np.std(final_features) + 1e-10)
return final_features
def additional_features(features):
mad = median_abs_deviation(features)
features_clipped = np.clip(features, 1e-10, None)
entropy = -np.sum(features_clipped * np.log(features_clipped))
return mad, entropy
def classify_audio(features):
_, entropy = additional_features(features)
print(entropy)
if entropy > 150:
return True, entropy
else:
return False, entropy
#--------------------------------------------------------------------------------------------------------------------
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
import torch
from scipy.stats import skew, kurtosis, median_abs_deviation
import shutil
import subprocess
import os
import librosa
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["FONTCONFIG_PATH"] = "/tmp/fontconfig"
os.environ["TF_ENABLE_ONEDNN_OPTS"]="0"
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
os.makedirs("/tmp/matplotlib", exist_ok=True)
os.makedirs("/tmp/fontconfig", exist_ok=True)
os.makedirs("/tmp/huggingface_cache", exist_ok=True)
SAVE_DIR = './audio'
os.makedirs(SAVE_DIR, exist_ok=True)
os.system('apt-get update && apt-get install -y ffmpeg')
def reencode_audio(input_path, output_path):
command = [
'/usr/bin/ffmpeg', '-i', input_path, '-acodec', 'pcm_s16le', '-ar', '16000', '-ac', '1', output_path
]
subprocess.run(command, check=True)
#--------------------------------------------------------------------------------------------------------------------
from collections import Counter
from datetime import datetime
import base64
@app.post("/upload")
async def upload_file(file: UploadFile = File(...)):
print(f"Received file: {file.filename}")
original_filename = file.filename.rsplit('.', 1)[0]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
wav_filename = os.path.join(SAVE_DIR, f"{timestamp}.wav")
reencoded_filename = os.path.join(SAVE_DIR, f"{timestamp}_reencoded.wav")
# os.makedirs(SAVE_DIR, exist_ok=True)
with open(wav_filename, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
reencode_audio(wav_filename, reencoded_filename)
os.remove(wav_filename)
print(f"File successfully re-encoded as: {reencoded_filename}")
try:
audio, sr = librosa.load(reencoded_filename, sr=None)
print("Loaded successfully with librosa")
except Exception as e:
print(f"Error loading re-encoded file: {e}")
new_features = extract_features(reencoded_filename)
prediction, entropy = classify_audio(new_features)
with open(reencoded_filename, "rb") as audio_file:
audio_data = audio_file.read()
# audio_base64 = base64.b64encode(audio_data).decode('utf-8')
os.remove(reencoded_filename)
return JSONResponse(content={
"prediction": bool(prediction),
"entropy": float(entropy),
})
@app.post("/upload_audio")
async def upload_file(file: UploadFile = File(...)):
print(f"Received file: {file.filename}")
original_filename = file.filename.rsplit('.', 1)[0]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
wav_filename = os.path.join(SAVE_DIR, f"{timestamp}.wav")
reencoded_filename = os.path.join(SAVE_DIR, f"{timestamp}_reencoded.wav")
# os.makedirs(SAVE_DIR, exist_ok=True)
with open(wav_filename, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
reencode_audio(wav_filename, reencoded_filename)
os.remove(wav_filename)
print(f"File successfully re-encoded as: {reencoded_filename}")
try:
audio, sr = librosa.load(reencoded_filename, sr=None)
print("Loaded successfully with librosa")
except Exception as e:
print(f"Error loading re-encoded file: {e}")
new_features = extract_features(reencoded_filename)
detector = UnifiedDeepfakeDetector()
print(reencoded_filename)
result = detector.analyze_audio_rf(reencoded_filename, model_choice="all")
prediction, entropy = classify_audio(new_features)
with open(reencoded_filename, "rb") as audio_file:
audio_data = audio_file.read()
result = list(result)
result.append("FAKE" if float(entropy) < 150 else "REAL")
print(result)
r_normalized = [x.upper() for x in result if x is not None]
counter = Counter(r_normalized)
most_common_element, _ = counter.most_common(1)[0]
print(f"The most frequent element is: {most_common_element}")
audio_base64 = base64.b64encode(audio_data).decode('utf-8')
print(f"Audio Data Length: {len(audio_data)}")
os.remove(reencoded_filename)
return JSONResponse(content={
"filename": file.filename,
"prediction": most_common_element.upper(),
"entropy": float(entropy),
"audio": audio_base64,
"content_type": "audio/wav"
})
|