Spaces:
Sleeping
Sleeping
Update app/retriever.py
Browse files- app/retriever.py +8 -8
app/retriever.py
CHANGED
|
@@ -222,13 +222,13 @@ def get_context(
|
|
| 222 |
search_kwargs = {
|
| 223 |
"model_name": config.get("embeddings", "MODEL_NAME")
|
| 224 |
}
|
| 225 |
-
model = SentenceTransformer(config.get("embeddings", "MODEL_NAME"))
|
| 226 |
-
query_vector = model.encode(query).tolist()
|
| 227 |
-
retrieved_docs = vectorstore.search(
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
# filter support for QdrantVectorStore
|
| 233 |
#if isinstance(vectorstore, QdrantVectorStore):
|
| 234 |
# filter_obj = create_filter(reports, sources, subtype, year)
|
|
@@ -236,7 +236,7 @@ def get_context(
|
|
| 236 |
# search_kwargs["filter"] = filter_obj
|
| 237 |
|
| 238 |
# Perform initial retrieval
|
| 239 |
-
|
| 240 |
|
| 241 |
logging.info(f"Retrieved {len(retrieved_docs)} documents for query: {query[:50]}...")
|
| 242 |
|
|
|
|
| 222 |
search_kwargs = {
|
| 223 |
"model_name": config.get("embeddings", "MODEL_NAME")
|
| 224 |
}
|
| 225 |
+
#model = SentenceTransformer(config.get("embeddings", "MODEL_NAME"))
|
| 226 |
+
#query_vector = model.encode(query).tolist()
|
| 227 |
+
#retrieved_docs = vectorstore.search(
|
| 228 |
+
## collection_name="EUDR",
|
| 229 |
+
# query_vector=query_vector,
|
| 230 |
+
# limit=top_k,
|
| 231 |
+
# with_payload=True)
|
| 232 |
# filter support for QdrantVectorStore
|
| 233 |
#if isinstance(vectorstore, QdrantVectorStore):
|
| 234 |
# filter_obj = create_filter(reports, sources, subtype, year)
|
|
|
|
| 236 |
# search_kwargs["filter"] = filter_obj
|
| 237 |
|
| 238 |
# Perform initial retrieval
|
| 239 |
+
retrieved_docs = vectorstore.search(query, top_k)
|
| 240 |
|
| 241 |
logging.info(f"Retrieved {len(retrieved_docs)} documents for query: {query[:50]}...")
|
| 242 |
|