# app.py import os # ─── 解決 DeepFace 無法寫入預設路徑的問題 ───────────────────────────────────────── # 將 DeepFace 的快取目錄指向可寫入的 /tmp 之下 os.environ["DEEPFACE_HOME"] = "/tmp/.deepface" import gradio as gr import numpy as np import joblib, io import librosa from deepface import DeepFace # ─── 1. 載入模型 ───────────────────────────────────────────────────────────── # 我們把模型檔放在跟 app.py 同一層的 voice_model.joblib MODEL_PATH = os.path.join(os.path.dirname(__file__), "voice_model.joblib") audio_model = joblib.load(MODEL_PATH) # ─── 2. 定義各種分析函數 ──────────────────────────────────────────────────── def analyze_face(frame: np.ndarray): # DeepFace 回傳 dict,裡面有 'dominant_emotion' res = DeepFace.analyze(frame, actions=["emotion"], enforce_detection=False) return frame, res["dominant_emotion"] def analyze_audio(wav_file): wav_bytes = wav_file.read() # 用 librosa 讀入 y, sr = librosa.load(io.BytesIO(wav_bytes), sr=None) mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) mf = np.mean(mfccs.T, axis=0) return audio_model.predict([mf])[0] def analyze_text(txt): # 簡單關鍵字 mapping mapping = { "😊 happy": ["開心","快樂","愉快","喜悅","歡喜","興奮","高興","歡"], "😠 angry": ["生氣","憤怒","不爽","發火","火大","氣憤"], "😢 sad": ["傷心","難過","哭","憂","悲","心酸","哀","痛苦","慘","愁"], "😲 surprise":["驚訝","意外","嚇","好奇","驚詫","詫異","訝異"], "😨 fear": ["怕","恐懼","緊張","懼","膽怯","畏"], } for emo, kws in mapping.items(): if any(w in txt for w in kws): return emo return "😐 neutral" # ─── 3. 建立 Gradio 介面 ──────────────────────────────────────────────────── with gr.Blocks(title="多模態即時情緒分析") as demo: gr.Markdown("## 🤖 多模態即時情緒分析") with gr.Tabs(): with gr.TabItem("📷 Live Face"): # 注意要用 gr.components.Camera 或 gr.components… camera = gr.components.Camera(label="請對準鏡頭 (Live)") out_img = gr.Image(label="擷取畫面") out_lbl = gr.Label(label="檢測到的情緒") camera.change( fn=analyze_face, inputs=camera, outputs=[out_img, out_lbl], live=True ) with gr.TabItem("🎤 上傳語音檔"): wav = gr.File(label="選擇 .wav 檔案", file_types=[".wav"]) wav_btn = gr.Button("開始分析") wav_out = gr.Textbox(label="語音偵測到的情緒") wav_btn.click(fn=analyze_audio, inputs=wav, outputs=wav_out) with gr.TabItem("⌨️ 輸入文字"): txt = gr.Textbox(label="在此輸入文字", lines=3) txt_btn = gr.Button("開始分析") txt_out = gr.Textbox(label="文字偵測到的情緒") txt_btn.click(fn=analyze_text, inputs=txt, outputs=txt_out) # 啟動 if __name__ == "__main__": # Hugging Face Spaces 上不需要傳 host/port,直接 .launch() 即可 demo.launch()