Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
print("Gradio version:", gr.__version__)
|
3 |
-
import os
|
4 |
-
import joblib
|
5 |
import numpy as np
|
|
|
6 |
import librosa
|
7 |
-
import gradio as gr
|
8 |
-
import time
|
9 |
-
import re
|
10 |
-
from transformers import pipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from deepface import DeepFace
|
13 |
-
from transformers import
|
14 |
-
|
15 |
|
16 |
-
# --- 1.
|
17 |
-
# 這裡 repo_id 填你的模型倉庫路徑,例如 "GCLing/emotion-svm-model"
|
18 |
-
# filename 填上傳到該倉庫的檔案名,例如 "svm_emotion_model.joblib"
|
19 |
print("Downloading SVM model from Hugging Face Hub...")
|
20 |
model_path = hf_hub_download(repo_id="GCLing/emotion-svm-model", filename="svm_emotion_model.joblib")
|
21 |
print(f"SVM model downloaded to: {model_path}")
|
22 |
svm_model = joblib.load(model_path)
|
23 |
print("SVM model loaded.")
|
24 |
|
25 |
-
# --- 2.
|
26 |
zero_shot = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
27 |
candidate_labels = ["joy", "sadness", "anger", "fear", "surprise", "disgust"]
|
28 |
label_map_en2cn = {
|
@@ -36,82 +30,38 @@ emo_keywords = {
|
|
36 |
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"],
|
37 |
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"]
|
38 |
}
|
39 |
-
# 简单否定词列表
|
40 |
negations = ["不","沒","沒有","別","勿","非"]
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# 直接取第一张人脸
|
63 |
-
if isinstance(res, list):
|
64 |
-
first = res[0] if res else {}
|
65 |
-
emo = first.get("emotion", {}) if isinstance(first, dict) else {}
|
66 |
-
else:
|
67 |
-
emo = res.get("emotion", {}) if isinstance(res, dict) else {}
|
68 |
-
print("predict_face result:", emo)
|
69 |
-
return emo
|
70 |
-
except Exception as e:
|
71 |
-
print("DeepFace.analyze error:", e)
|
72 |
-
return {}
|
73 |
|
74 |
-
def predict_voice(audio_path: str):
|
75 |
-
# 如果没有录音文件路径,直接返回空字典或提示
|
76 |
-
if not audio_path:
|
77 |
-
# 可打印日志,帮助调试
|
78 |
-
print("predict_voice: 收到 None 或空 audio_path,跳過分析")
|
79 |
-
return {}
|
80 |
-
try:
|
81 |
-
signal, sr = librosa.load(audio_path, sr=None)
|
82 |
-
# 提取特征
|
83 |
-
feat = extract_feature(signal, sr) # 你的特征提取函数
|
84 |
-
probs = svm_model.predict_proba([feat])[0]
|
85 |
-
labels = svm_model.classes_
|
86 |
-
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
87 |
-
except Exception as e:
|
88 |
-
print("predict_voice error:", e)
|
89 |
-
return {}
|
90 |
-
|
91 |
def predict_text_mixed(text: str):
|
92 |
-
"""
|
93 |
-
先用 keyword_emotion 规则;若未命中再用 zero-shot 分类,
|
94 |
-
返回 {中文标签: float_score} 的 dict,供 gr.Label 显示。
|
95 |
-
"""
|
96 |
if not text or text.strip() == "":
|
97 |
return {}
|
98 |
-
# 规则优先
|
99 |
res = keyword_emotion(text)
|
100 |
if res:
|
101 |
-
# 只返回最高那一项及其比例,也可返回完整分布
|
102 |
top_emo = max(res, key=res.get)
|
103 |
-
|
104 |
-
# mapping: happy->高兴, angry->愤怒, etc.
|
105 |
-
mapping = {
|
106 |
-
"happy": "高兴",
|
107 |
-
"angry": "愤怒",
|
108 |
-
"sad": "悲伤",
|
109 |
-
"surprise": "惊讶",
|
110 |
-
"fear": "恐惧"
|
111 |
-
}
|
112 |
cn = mapping.get(top_emo, top_emo)
|
113 |
return {cn: res[top_emo]}
|
114 |
-
# 规则未命中,zero-shot fallback
|
115 |
try:
|
116 |
out = zero_shot(text, candidate_labels=candidate_labels,
|
117 |
hypothesis_template="这句话表达了{}情绪")
|
@@ -124,29 +74,70 @@ def predict_text_mixed(text: str):
|
|
124 |
print("zero-shot error:", e)
|
125 |
return {"中性": 1.0}
|
126 |
|
127 |
-
# ---
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
webcam = gr.Image(source="webcam", streaming=True, type="numpy", label="攝像頭畫面")
|
132 |
-
face_out = gr.Label(label="情緒分布")
|
133 |
-
webcam.stream(fn=predict_face, inputs=webcam, outputs=face_out)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
with gr.TabItem("文字情緒"):
|
143 |
gr.Markdown("### 文字情緒 分析 (规则+zero-shot)")
|
144 |
with gr.Row():
|
145 |
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…")
|
146 |
text_out = gr.Label(label="文字情緒結果")
|
147 |
text.submit(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
|
|
148 |
if __name__ == "__main__":
|
149 |
-
|
150 |
demo.launch()
|
151 |
-
# 不要传 server_name 或 server_port
|
152 |
-
|
|
|
1 |
import gradio as gr
|
2 |
print("Gradio version:", gr.__version__)
|
3 |
+
import os, time, re
|
|
|
4 |
import numpy as np
|
5 |
+
import joblib
|
6 |
import librosa
|
|
|
|
|
|
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from deepface import DeepFace
|
9 |
+
from transformers import pipeline
|
10 |
+
# 如果不手动用 AutoTokenizer/AutoModel,就不必 import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
|
12 |
+
# --- 1. 加载 SVM 语音模型 ---
|
|
|
|
|
13 |
print("Downloading SVM model from Hugging Face Hub...")
|
14 |
model_path = hf_hub_download(repo_id="GCLing/emotion-svm-model", filename="svm_emotion_model.joblib")
|
15 |
print(f"SVM model downloaded to: {model_path}")
|
16 |
svm_model = joblib.load(model_path)
|
17 |
print("SVM model loaded.")
|
18 |
|
19 |
+
# --- 2. 文本情绪分析:规则+zero-shot ---
|
20 |
zero_shot = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
21 |
candidate_labels = ["joy", "sadness", "anger", "fear", "surprise", "disgust"]
|
22 |
label_map_en2cn = {
|
|
|
30 |
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"],
|
31 |
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"]
|
32 |
}
|
|
|
33 |
negations = ["不","沒","沒有","別","勿","非"]
|
34 |
|
35 |
+
def keyword_emotion(text: str):
|
36 |
+
counts = {emo: 0 for emo in emo_keywords}
|
37 |
+
for emo, kws in emo_keywords.items():
|
38 |
+
for w in kws:
|
39 |
+
idx = text.find(w)
|
40 |
+
if idx != -1:
|
41 |
+
# 简单否定检测
|
42 |
+
neg = False
|
43 |
+
for neg_word in negations:
|
44 |
+
plen = len(neg_word)
|
45 |
+
if idx - plen >= 0 and text[idx-plen:idx] == neg_word:
|
46 |
+
neg = True
|
47 |
+
break
|
48 |
+
if not neg:
|
49 |
+
counts[emo] += 1
|
50 |
+
total = sum(counts.values())
|
51 |
+
if total > 0:
|
52 |
+
return {emo: counts[emo]/total for emo in counts}
|
53 |
+
else:
|
54 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def predict_text_mixed(text: str):
|
|
|
|
|
|
|
|
|
57 |
if not text or text.strip() == "":
|
58 |
return {}
|
|
|
59 |
res = keyword_emotion(text)
|
60 |
if res:
|
|
|
61 |
top_emo = max(res, key=res.get)
|
62 |
+
mapping = {"happy":"高兴","angry":"愤怒","sad":"悲���","surprise":"惊讶","fear":"恐惧"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
cn = mapping.get(top_emo, top_emo)
|
64 |
return {cn: res[top_emo]}
|
|
|
65 |
try:
|
66 |
out = zero_shot(text, candidate_labels=candidate_labels,
|
67 |
hypothesis_template="这句话表达了{}情绪")
|
|
|
74 |
print("zero-shot error:", e)
|
75 |
return {"中性": 1.0}
|
76 |
|
77 |
+
# --- 3. 语音情绪预测函数 ---
|
78 |
+
def extract_feature(signal: np.ndarray, sr: int) -> np.ndarray:
|
79 |
+
mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=13)
|
80 |
+
return np.concatenate([np.mean(mfcc, axis=1), np.var(mfcc, axis=1)])
|
|
|
|
|
|
|
81 |
|
82 |
+
def predict_voice(audio_path: str):
|
83 |
+
if not audio_path:
|
84 |
+
print("predict_voice: 无 audio_path,跳过")
|
85 |
+
return {}
|
86 |
+
try:
|
87 |
+
signal, sr = librosa.load(audio_path, sr=None)
|
88 |
+
feat = extract_feature(signal, sr)
|
89 |
+
probs = svm_model.predict_proba([feat])[0]
|
90 |
+
labels = svm_model.classes_
|
91 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
92 |
+
except Exception as e:
|
93 |
+
print("predict_voice error:", e)
|
94 |
+
return {}
|
95 |
|
96 |
+
# --- 4. 人脸情绪预测函数 ---
|
97 |
+
def predict_face(img: np.ndarray):
|
98 |
+
print("predict_face called, img is None?", img is None)
|
99 |
+
if img is None:
|
100 |
+
return {}
|
101 |
+
try:
|
102 |
+
res = DeepFace.analyze(img, actions=["emotion"], detector_backend="opencv")
|
103 |
+
if isinstance(res, list):
|
104 |
+
first = res[0] if res else {}
|
105 |
+
emo = first.get("emotion", {}) if isinstance(first, dict) else {}
|
106 |
+
else:
|
107 |
+
emo = res.get("emotion", {}) if isinstance(res, dict) else {}
|
108 |
+
# 转 float,确保 JSON 可序列化
|
109 |
+
emo_fixed = {k: float(v) for k, v in emo.items()}
|
110 |
+
print("predict_face result:", emo_fixed)
|
111 |
+
return emo_fixed
|
112 |
+
except Exception as e:
|
113 |
+
print("DeepFace.analyze error:", e)
|
114 |
+
return {}
|
115 |
+
|
116 |
+
# --- 5. Gradio 界面 ---
|
117 |
+
with gr.Blocks() as demo:
|
118 |
+
gr.Markdown("## 多模態情緒分析示例")
|
119 |
+
with gr.Tabs():
|
120 |
+
# 臉部情緒 Tab
|
121 |
+
with gr.TabItem("臉部情緒"):
|
122 |
+
gr.Markdown("### 臉部情緒 (即時 Webcam Streaming 分析)")
|
123 |
+
with gr.Row():
|
124 |
+
webcam = gr.Image(source="webcam", streaming=True, type="numpy", label="攝像頭畫面")
|
125 |
+
face_out = gr.Label(label="情緒分布")
|
126 |
+
webcam.stream(fn=predict_face, inputs=webcam, outputs=face_out)
|
127 |
+
# 語音情緒 Tab
|
128 |
+
with gr.TabItem("語音情緒"):
|
129 |
+
gr.Markdown("### 語音情緒 分析")
|
130 |
+
with gr.Row():
|
131 |
+
audio = gr.Audio(source="microphone", streaming=False, type="filepath", label="錄音")
|
132 |
+
voice_out = gr.Label(label="語音情緒結果")
|
133 |
+
audio.change(fn=predict_voice, inputs=audio, outputs=voice_out)
|
134 |
+
# 文字情緒 Tab
|
135 |
with gr.TabItem("文字情緒"):
|
136 |
gr.Markdown("### 文字情緒 分析 (规则+zero-shot)")
|
137 |
with gr.Row():
|
138 |
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…")
|
139 |
text_out = gr.Label(label="文字情緒結果")
|
140 |
text.submit(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
141 |
+
|
142 |
if __name__ == "__main__":
|
|
|
143 |
demo.launch()
|
|
|
|