import gradio as gr from huggingface_hub import InferenceClient import torch from transformers import pipeline from datasets import load_dataset # Set up your TTS model (as before) synthesiser = pipeline("text-to-speech", "Futuresony/output") # Set up your text generation client client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Generate text response from your model messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Convert the generated text into speech (Text-to-Speech) # Get speaker embedding (optional, if you want to control the speaker) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Generate speech from the text response speech = synthesiser(response, forward_params={"speaker_embeddings": speaker_embedding}) # Return the audio as a Gradio audio component return response, speech["audio"] # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()