Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import torch | |
| from transformers import pipeline | |
| from datasets import load_dataset | |
| # Set up your TTS model (as before) | |
| synthesiser = pipeline("text-to-speech", "Futuresony/output") | |
| # Set up your text generation client | |
| client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Generate text response from your model | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| # Convert the generated text into speech (Text-to-Speech) | |
| # Get speaker embedding (optional, if you want to control the speaker) | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
| # Generate speech from the text response | |
| speech = synthesiser(response, forward_params={"speaker_embeddings": speaker_embedding}) | |
| # Return the audio as a Gradio audio component | |
| return response, speech["audio"] | |
| # Create the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |