Spaces:
Runtime error
Runtime error
| from typing import Tuple, List | |
| import torch | |
| from torch import nn | |
| from torch.nn import Conv2d | |
| from torch.nn.utils import weight_norm | |
| class MultiPeriodDiscriminator(nn.Module): | |
| """ | |
| Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan. | |
| Additionally, it allows incorporating conditional information with a learned embeddings table. | |
| Args: | |
| periods (tuple[int]): Tuple of periods for each discriminator. | |
| num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. | |
| Defaults to None. | |
| """ | |
| def __init__(self, periods: Tuple[int] = (2, 3, 5, 7, 11), num_embeddings: int = None): | |
| super().__init__() | |
| self.discriminators = nn.ModuleList([DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods]) | |
| def forward( | |
| self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
| ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for d in self.discriminators: | |
| y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
| y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorP(nn.Module): | |
| def __init__( | |
| self, | |
| period: int, | |
| in_channels: int = 1, | |
| kernel_size: int = 5, | |
| stride: int = 3, | |
| lrelu_slope: float = 0.1, | |
| num_embeddings: int = None, | |
| ): | |
| super().__init__() | |
| self.period = period | |
| self.convs = nn.ModuleList( | |
| [ | |
| weight_norm(Conv2d(in_channels, 32, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
| weight_norm(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
| weight_norm(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
| weight_norm(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
| weight_norm(Conv2d(1024, 1024, (kernel_size, 1), (1, 1), padding=(kernel_size // 2, 0))), | |
| ] | |
| ) | |
| if num_embeddings is not None: | |
| self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=1024) | |
| torch.nn.init.zeros_(self.emb.weight) | |
| self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| self.lrelu_slope = lrelu_slope | |
| def forward( | |
| self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None | |
| ) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
| x = x.unsqueeze(1) | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = torch.nn.functional.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for i, l in enumerate(self.convs): | |
| x = l(x) | |
| x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
| if i > 0: | |
| fmap.append(x) | |
| if cond_embedding_id is not None: | |
| emb = self.emb(cond_embedding_id) | |
| h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
| else: | |
| h = 0 | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x += h | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiResolutionDiscriminator(nn.Module): | |
| def __init__( | |
| self, | |
| resolutions: Tuple[Tuple[int, int, int]] = ((1024, 256, 1024), (2048, 512, 2048), (512, 128, 512)), | |
| num_embeddings: int = None, | |
| ): | |
| """ | |
| Multi-Resolution Discriminator module adapted from https://github.com/mindslab-ai/univnet. | |
| Additionally, it allows incorporating conditional information with a learned embeddings table. | |
| Args: | |
| resolutions (tuple[tuple[int, int, int]]): Tuple of resolutions for each discriminator. | |
| Each resolution should be a tuple of (n_fft, hop_length, win_length). | |
| num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. | |
| Defaults to None. | |
| """ | |
| super().__init__() | |
| self.discriminators = nn.ModuleList( | |
| [DiscriminatorR(resolution=r, num_embeddings=num_embeddings) for r in resolutions] | |
| ) | |
| def forward( | |
| self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
| ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for d in self.discriminators: | |
| y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
| y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorR(nn.Module): | |
| def __init__( | |
| self, | |
| resolution: Tuple[int, int, int], | |
| channels: int = 64, | |
| in_channels: int = 1, | |
| num_embeddings: int = None, | |
| lrelu_slope: float = 0.1, | |
| ): | |
| super().__init__() | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.lrelu_slope = lrelu_slope | |
| self.convs = nn.ModuleList( | |
| [ | |
| weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))), | |
| weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))), | |
| weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))), | |
| weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)), | |
| weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)), | |
| ] | |
| ) | |
| if num_embeddings is not None: | |
| self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) | |
| torch.nn.init.zeros_(self.emb.weight) | |
| self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1))) | |
| def forward( | |
| self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None | |
| ) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
| fmap = [] | |
| x = self.spectrogram(x) | |
| x = x.unsqueeze(1) | |
| for l in self.convs: | |
| x = l(x) | |
| x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
| fmap.append(x) | |
| if cond_embedding_id is not None: | |
| emb = self.emb(cond_embedding_id) | |
| h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
| else: | |
| h = 0 | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x += h | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| def spectrogram(self, x: torch.Tensor) -> torch.Tensor: | |
| n_fft, hop_length, win_length = self.resolution | |
| magnitude_spectrogram = torch.stft( | |
| x, | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| window=None, # interestingly rectangular window kind of works here | |
| center=True, | |
| return_complex=True, | |
| ).abs() | |
| return magnitude_spectrogram | |