Spaces:
Runtime error
Runtime error
ljy266987
commited on
Commit
•
12bfd03
1
Parent(s):
2c72770
add lfs
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- app.py +55 -0
- cosyvoice/__init__.py +0 -0
- cosyvoice/__pycache__/__init__.cpython-310.pyc +0 -0
- cosyvoice/bin/inference.py +114 -0
- cosyvoice/bin/train.py +137 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +83 -0
- cosyvoice/cli/frontend.py +146 -0
- cosyvoice/cli/model.py +59 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +160 -0
- cosyvoice/dataset/processor.py +366 -0
- cosyvoice/flow/decoder.py +222 -0
- cosyvoice/flow/flow.py +135 -0
- cosyvoice/flow/flow_matching.py +131 -0
- cosyvoice/flow/length_regulator.py +49 -0
- cosyvoice/hifigan/f0_predictor.py +55 -0
- cosyvoice/hifigan/generator.py +391 -0
- cosyvoice/llm/llm.py +206 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +326 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +293 -0
- cosyvoice/transformer/encoder.py +472 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/__pycache__/checkpoint.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/checkpoint.cpython-38.pyc +0 -0
- cosyvoice/utils/__pycache__/class_utils.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/cmvn.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/common.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/context_graph.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/convert_cosyvoice_pt.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/convert_cosyvoice_pt.cpython-38.pyc +0 -0
- cosyvoice/utils/__pycache__/ctc_utils.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/executor.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/file_utils.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/init_model.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/init_tokenizer.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/mask.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/scheduler.cpython-310.pyc +0 -0
- cosyvoice/utils/__pycache__/train_utils.cpython-310.pyc +0 -0
- cosyvoice/utils/class_utils.py +70 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
.dic filter=lfs diff=lfs merge=lfs -text
|
37 |
+
.bin filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.dic filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.dict filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
4 |
+
sys.path.append('{}/third_party/AcademiCodec'.format(ROOT_DIR))
|
5 |
+
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
6 |
+
|
7 |
+
from modelscope import snapshot_download
|
8 |
+
snapshot_download('speech_tts/speech_kantts_ttsfrd', revision='v1.0.3', allow_file_pattern='ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl', local_dir='pretrained_models/speech_kantts_ttsfrd')
|
9 |
+
os.system('cd pretrained_models/speech_kantts_ttsfrd/ && pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl')
|
10 |
+
os.system('sed -i [email protected]@typing_extensions@g /opt/conda/lib/python3.8/site-packages/inflect/__init__.py')
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
from css.advanced import advanced
|
14 |
+
from css.custom import custom
|
15 |
+
from css.preset import preset
|
16 |
+
|
17 |
+
audio_mode_choices = [('预置语音生成', 'preset'), ('定制语音生成(复刻录制声音)', 'custom'),
|
18 |
+
('高级语音生成(自然语言控制)', 'advanced')]
|
19 |
+
|
20 |
+
|
21 |
+
def on_audio_mode_change(_audio_mode_radio):
|
22 |
+
yield {
|
23 |
+
preset_layout: gr.update(visible=_audio_mode_radio == 'preset'),
|
24 |
+
custom_layout: gr.update(visible=_audio_mode_radio == 'custom'),
|
25 |
+
advanced_layout: gr.update(visible=_audio_mode_radio == 'advanced')
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
custom_css = """
|
30 |
+
.full-height {
|
31 |
+
height: 100%;
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
default_layout = 'preset'
|
36 |
+
|
37 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
38 |
+
audio_mode_radio = gr.Radio(choices=audio_mode_choices,
|
39 |
+
value=default_layout,
|
40 |
+
label="选择语音生成模式")
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column(visible=default_layout == 'preset') as preset_layout:
|
43 |
+
preset()
|
44 |
+
with gr.Column(visible=default_layout == 'custom') as custom_layout:
|
45 |
+
custom()
|
46 |
+
with gr.Column(
|
47 |
+
visible=default_layout == 'advanced') as advanced_layout:
|
48 |
+
advanced()
|
49 |
+
|
50 |
+
audio_mode_radio.change(
|
51 |
+
fn=on_audio_mode_change,
|
52 |
+
inputs=[audio_mode_radio],
|
53 |
+
outputs=[preset_layout, custom_layout, advanced_layout])
|
54 |
+
|
55 |
+
demo.queue().launch(server_port=50000)
|
cosyvoice/__init__.py
ADDED
File without changes
|
cosyvoice/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (152 Bytes). View file
|
|
cosyvoice/bin/inference.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
import torchaudio
|
25 |
+
from hyperpyyaml import load_hyperpyyaml
|
26 |
+
from tqdm import tqdm
|
27 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
28 |
+
|
29 |
+
from cosyvoice.dataset.dataset import Dataset
|
30 |
+
|
31 |
+
def get_args():
|
32 |
+
parser = argparse.ArgumentParser(description='inference with your model')
|
33 |
+
parser.add_argument('--config', required=True, help='config file')
|
34 |
+
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
35 |
+
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
36 |
+
parser.add_argument('--tts_text', required=True, help='tts input file')
|
37 |
+
parser.add_argument('--llm_model', required=True, help='llm model file')
|
38 |
+
parser.add_argument('--flow_model', required=True, help='flow model file')
|
39 |
+
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
40 |
+
parser.add_argument('--gpu',
|
41 |
+
type=int,
|
42 |
+
default=-1,
|
43 |
+
help='gpu id for this rank, -1 for cpu')
|
44 |
+
parser.add_argument('--mode',
|
45 |
+
default='sft',
|
46 |
+
choices=['sft', 'zero_shot'],
|
47 |
+
help='inference mode')
|
48 |
+
parser.add_argument('--result_dir', required=True, help='asr result file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
59 |
+
|
60 |
+
# Init cosyvoice models from configs
|
61 |
+
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
62 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
63 |
+
with open(args.config, 'r') as f:
|
64 |
+
configs = load_hyperpyyaml(f)
|
65 |
+
|
66 |
+
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
67 |
+
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
68 |
+
|
69 |
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
70 |
+
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
71 |
+
|
72 |
+
del configs
|
73 |
+
os.makedirs(args.result_dir, exist_ok=True)
|
74 |
+
fn = os.path.join(args.result_dir, 'wav.scp')
|
75 |
+
f = open(fn, 'w')
|
76 |
+
with torch.no_grad():
|
77 |
+
for batch_idx, batch in tqdm(enumerate(test_data_loader)):
|
78 |
+
utts = batch["utts"]
|
79 |
+
assert len(utts) == 1, "inference mode only support batchsize 1"
|
80 |
+
text = batch["text"]
|
81 |
+
text_token = batch["text_token"].to(device)
|
82 |
+
text_token_len = batch["text_token_len"].to(device)
|
83 |
+
tts_text = batch["tts_text"]
|
84 |
+
tts_index = batch["tts_index"]
|
85 |
+
tts_text_token = batch["tts_text_token"].to(device)
|
86 |
+
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
87 |
+
speech_token = batch["speech_token"].to(device)
|
88 |
+
speech_token_len = batch["speech_token_len"].to(device)
|
89 |
+
speech_feat = batch["speech_feat"].to(device)
|
90 |
+
speech_feat_len = batch["speech_feat_len"].to(device)
|
91 |
+
utt_embedding = batch["utt_embedding"].to(device)
|
92 |
+
spk_embedding = batch["spk_embedding"].to(device)
|
93 |
+
if args.mode == 'sft':
|
94 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
95 |
+
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
96 |
+
else:
|
97 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
98 |
+
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
99 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
100 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
101 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
102 |
+
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
103 |
+
model_output = model.inference(**model_input)
|
104 |
+
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
105 |
+
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
106 |
+
torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
|
107 |
+
f.write('{} {}\n'.format(tts_key, tts_fn))
|
108 |
+
f.flush()
|
109 |
+
f.close()
|
110 |
+
logging.info('Result wav.scp saved in {}'.format(fn))
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
main()
|
cosyvoice/bin/train.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
from copy import deepcopy
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
import deepspeed
|
24 |
+
|
25 |
+
from hyperpyyaml import load_hyperpyyaml
|
26 |
+
|
27 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
28 |
+
|
29 |
+
from cosyvoice.utils.executor import Executor
|
30 |
+
from cosyvoice.utils.train_utils import (
|
31 |
+
init_distributed,
|
32 |
+
init_dataset_and_dataloader,
|
33 |
+
init_optimizer_and_scheduler,
|
34 |
+
init_summarywriter, save_model,
|
35 |
+
wrap_cuda_model, check_modify_and_save_config)
|
36 |
+
|
37 |
+
|
38 |
+
def get_args():
|
39 |
+
parser = argparse.ArgumentParser(description='training your network')
|
40 |
+
parser.add_argument('--train_engine',
|
41 |
+
default='torch_ddp',
|
42 |
+
choices=['torch_ddp', 'deepspeed'],
|
43 |
+
help='Engine for paralleled training')
|
44 |
+
parser.add_argument('--model', required=True, help='model which will be trained')
|
45 |
+
parser.add_argument('--config', required=True, help='config file')
|
46 |
+
parser.add_argument('--train_data', required=True, help='train data file')
|
47 |
+
parser.add_argument('--cv_data', required=True, help='cv data file')
|
48 |
+
parser.add_argument('--checkpoint', help='checkpoint model')
|
49 |
+
parser.add_argument('--model_dir', required=True, help='save model dir')
|
50 |
+
parser.add_argument('--tensorboard_dir',
|
51 |
+
default='tensorboard',
|
52 |
+
help='tensorboard log dir')
|
53 |
+
parser.add_argument('--ddp.dist_backend',
|
54 |
+
dest='dist_backend',
|
55 |
+
default='nccl',
|
56 |
+
choices=['nccl', 'gloo'],
|
57 |
+
help='distributed backend')
|
58 |
+
parser.add_argument('--num_workers',
|
59 |
+
default=0,
|
60 |
+
type=int,
|
61 |
+
help='num of subprocess workers for reading')
|
62 |
+
parser.add_argument('--prefetch',
|
63 |
+
default=100,
|
64 |
+
type=int,
|
65 |
+
help='prefetch number')
|
66 |
+
parser.add_argument('--pin_memory',
|
67 |
+
action='store_true',
|
68 |
+
default=False,
|
69 |
+
help='Use pinned memory buffers used for reading')
|
70 |
+
parser.add_argument('--deepspeed.save_states',
|
71 |
+
dest='save_states',
|
72 |
+
default='model_only',
|
73 |
+
choices=['model_only', 'model+optimizer'],
|
74 |
+
help='save model/optimizer states')
|
75 |
+
parser.add_argument('--timeout',
|
76 |
+
default=30,
|
77 |
+
type=int,
|
78 |
+
help='timeout (in seconds) of cosyvoice_join. ' +
|
79 |
+
'30s for aishell & 300s for wenetspeech')
|
80 |
+
parser = deepspeed.add_config_arguments(parser)
|
81 |
+
args = parser.parse_args()
|
82 |
+
return args
|
83 |
+
|
84 |
+
|
85 |
+
@record
|
86 |
+
def main():
|
87 |
+
args = get_args()
|
88 |
+
logging.basicConfig(level=logging.DEBUG,
|
89 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
90 |
+
|
91 |
+
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
92 |
+
with open(args.config, 'r') as f:
|
93 |
+
configs = load_hyperpyyaml(f, overrides=override_dict)
|
94 |
+
configs['train_conf'].update(vars(args))
|
95 |
+
|
96 |
+
# Init env for ddp
|
97 |
+
init_distributed(args)
|
98 |
+
|
99 |
+
# Get dataset & dataloader
|
100 |
+
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
101 |
+
init_dataset_and_dataloader(args, configs)
|
102 |
+
|
103 |
+
# Do some sanity checks and save config to arsg.model_dir
|
104 |
+
configs = check_modify_and_save_config(args, configs)
|
105 |
+
|
106 |
+
# Tensorboard summary
|
107 |
+
writer = init_summarywriter(args)
|
108 |
+
|
109 |
+
# load checkpoint
|
110 |
+
model = configs[args.model]
|
111 |
+
if args.checkpoint is not None:
|
112 |
+
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
|
113 |
+
|
114 |
+
# Dispatch model from cpu to gpu
|
115 |
+
model = wrap_cuda_model(args, model)
|
116 |
+
|
117 |
+
# Get optimizer & scheduler
|
118 |
+
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
119 |
+
|
120 |
+
# Save init checkpoints
|
121 |
+
info_dict = deepcopy(configs['train_conf'])
|
122 |
+
save_model(model, 'init', info_dict)
|
123 |
+
|
124 |
+
# Get executor
|
125 |
+
executor = Executor()
|
126 |
+
|
127 |
+
# Start training loop
|
128 |
+
for epoch in range(info_dict['max_epoch']):
|
129 |
+
executor.epoch = epoch
|
130 |
+
train_dataset.set_epoch(epoch)
|
131 |
+
dist.barrier()
|
132 |
+
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
133 |
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
|
134 |
+
dist.destroy_process_group(group_join)
|
135 |
+
|
136 |
+
if __name__ == '__main__':
|
137 |
+
main()
|
cosyvoice/cli/__init__.py
ADDED
File without changes
|
cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
from hyperpyyaml import load_hyperpyyaml
|
17 |
+
from modelscope import snapshot_download
|
18 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
19 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
20 |
+
|
21 |
+
class CosyVoice:
|
22 |
+
|
23 |
+
def __init__(self, model_dir):
|
24 |
+
instruct = True if '-Instruct' in model_dir else False
|
25 |
+
self.model_dir = model_dir
|
26 |
+
if not os.path.exists(model_dir):
|
27 |
+
model_dir = snapshot_download(model_dir)
|
28 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
29 |
+
configs = load_hyperpyyaml(f)
|
30 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
31 |
+
configs['feat_extractor'],
|
32 |
+
'{}/campplus.onnx'.format(model_dir),
|
33 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
34 |
+
'{}/spk2info.pt'.format(model_dir),
|
35 |
+
instruct,
|
36 |
+
configs['allowed_special'])
|
37 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
38 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
39 |
+
'{}/flow.pt'.format(model_dir),
|
40 |
+
'{}/hift.pt'.format(model_dir))
|
41 |
+
del configs
|
42 |
+
|
43 |
+
def list_avaliable_spks(self):
|
44 |
+
spks = list(self.frontend.spk2info.keys())
|
45 |
+
return spks
|
46 |
+
|
47 |
+
def inference_sft(self, tts_text, spk_id):
|
48 |
+
tts_speeches = []
|
49 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
50 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
51 |
+
model_output = self.model.inference(**model_input)
|
52 |
+
tts_speeches.append(model_output['tts_speech'])
|
53 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
54 |
+
|
55 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
56 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
57 |
+
tts_speeches = []
|
58 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
59 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
60 |
+
model_output = self.model.inference(**model_input)
|
61 |
+
tts_speeches.append(model_output['tts_speech'])
|
62 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
63 |
+
|
64 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
65 |
+
if self.frontend.instruct is True:
|
66 |
+
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
67 |
+
tts_speeches = []
|
68 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
69 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
70 |
+
model_output = self.model.inference(**model_input)
|
71 |
+
tts_speeches.append(model_output['tts_speech'])
|
72 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
73 |
+
|
74 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
75 |
+
if self.frontend.instruct is False:
|
76 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
77 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
78 |
+
tts_speeches = []
|
79 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
80 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
81 |
+
model_output = self.model.inference(**model_input)
|
82 |
+
tts_speeches.append(model_output['tts_speech'])
|
83 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
cosyvoice/cli/frontend.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from functools import partial
|
15 |
+
import onnxruntime
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
import whisper
|
19 |
+
from typing import Callable
|
20 |
+
import torchaudio.compliance.kaldi as kaldi
|
21 |
+
import torchaudio
|
22 |
+
import os
|
23 |
+
import inflect
|
24 |
+
import ttsfrd
|
25 |
+
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
26 |
+
|
27 |
+
|
28 |
+
class CosyVoiceFrontEnd:
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
get_tokenizer: Callable,
|
32 |
+
feat_extractor: Callable,
|
33 |
+
campplus_model: str,
|
34 |
+
speech_tokenizer_model: str,
|
35 |
+
spk2info: str = '',
|
36 |
+
instruct: bool = False,
|
37 |
+
allowed_special: str = 'all'):
|
38 |
+
self.tokenizer = get_tokenizer()
|
39 |
+
self.feat_extractor = feat_extractor
|
40 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
41 |
+
option = onnxruntime.SessionOptions()
|
42 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
43 |
+
option.intra_op_num_threads = 1
|
44 |
+
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
45 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"])
|
46 |
+
if os.path.exists(spk2info):
|
47 |
+
self.spk2info = torch.load(spk2info, map_location=self.device)
|
48 |
+
self.instruct = instruct
|
49 |
+
self.allowed_special = allowed_special
|
50 |
+
self.inflect_parser = inflect.engine()
|
51 |
+
self.frd = ttsfrd.TtsFrontendEngine()
|
52 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
53 |
+
assert self.frd.initialize('{}/../../pretrained_models/speech_kantts_ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource'
|
54 |
+
self.frd.set_lang_type('pinyin')
|
55 |
+
self.frd.enable_pinyin_mix(True)
|
56 |
+
self.frd.set_breakmodel_index(1)
|
57 |
+
|
58 |
+
def _extract_text_token(self, text):
|
59 |
+
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
60 |
+
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
61 |
+
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
62 |
+
return text_token, text_token_len
|
63 |
+
|
64 |
+
def _extract_speech_token(self, speech):
|
65 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
66 |
+
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
67 |
+
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
68 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
69 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
70 |
+
return speech_token, speech_token_len
|
71 |
+
|
72 |
+
def _extract_spk_embedding(self, speech):
|
73 |
+
feat = kaldi.fbank(speech,
|
74 |
+
num_mel_bins=80,
|
75 |
+
dither=0,
|
76 |
+
sample_frequency=16000)
|
77 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
78 |
+
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
79 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
80 |
+
return embedding
|
81 |
+
|
82 |
+
def _extract_speech_feat(self, speech):
|
83 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
84 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
85 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
86 |
+
return speech_feat, speech_feat_len
|
87 |
+
|
88 |
+
def text_normalize(self, text, split=True):
|
89 |
+
text = text.strip()
|
90 |
+
if contains_chinese(text):
|
91 |
+
text = self.frd.get_frd_extra_info(text, 'input').replace("\n", "")
|
92 |
+
text = replace_blank(text)
|
93 |
+
text = replace_corner_mark(text)
|
94 |
+
text = text.replace(".", "、")
|
95 |
+
text = text.replace(" - ", ",")
|
96 |
+
text = remove_bracket(text)
|
97 |
+
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
98 |
+
token_min_n=60, merge_len=20,
|
99 |
+
comma_split=False)]
|
100 |
+
else:
|
101 |
+
text = spell_out_number(text, self.inflect_parser)
|
102 |
+
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
103 |
+
token_min_n=60, merge_len=20,
|
104 |
+
comma_split=False)]
|
105 |
+
if split is False:
|
106 |
+
return text
|
107 |
+
return texts
|
108 |
+
|
109 |
+
def frontend_sft(self, tts_text, spk_id):
|
110 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
111 |
+
embedding = self.spk2info[spk_id]['embedding']
|
112 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
113 |
+
return model_input
|
114 |
+
|
115 |
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
116 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
117 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
118 |
+
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
119 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
120 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
121 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
122 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
123 |
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
124 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
125 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
126 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
127 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
128 |
+
return model_input
|
129 |
+
|
130 |
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
131 |
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
132 |
+
# in cross lingual mode, we remove prompt in llm
|
133 |
+
del model_input['prompt_text']
|
134 |
+
del model_input['prompt_text_len']
|
135 |
+
del model_input['llm_prompt_speech_token']
|
136 |
+
del model_input['llm_prompt_speech_token_len']
|
137 |
+
return model_input
|
138 |
+
|
139 |
+
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
140 |
+
model_input = self.frontend_sft(tts_text, spk_id)
|
141 |
+
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
142 |
+
del model_input['llm_embedding']
|
143 |
+
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
144 |
+
model_input['prompt_text'] = instruct_text_token
|
145 |
+
model_input['prompt_text_len'] = instruct_text_token_len
|
146 |
+
return model_input
|
cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
|
16 |
+
class CosyVoiceModel:
|
17 |
+
|
18 |
+
def __init__(self,
|
19 |
+
llm: torch.nn.Module,
|
20 |
+
flow: torch.nn.Module,
|
21 |
+
hift: torch.nn.Module):
|
22 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
self.llm = llm
|
24 |
+
self.flow = flow
|
25 |
+
self.hift = hift
|
26 |
+
|
27 |
+
def load(self, llm_model, flow_model, hift_model):
|
28 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
29 |
+
self.llm.to(self.device).eval()
|
30 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
31 |
+
self.flow.to(self.device).eval()
|
32 |
+
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
33 |
+
self.hift.to(self.device).eval()
|
34 |
+
|
35 |
+
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
36 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
37 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
38 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
39 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
40 |
+
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
41 |
+
text_len=text_len.to(self.device),
|
42 |
+
prompt_text=prompt_text.to(self.device),
|
43 |
+
prompt_text_len=prompt_text_len.to(self.device),
|
44 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
45 |
+
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
46 |
+
embedding=llm_embedding.to(self.device),
|
47 |
+
beam_size=1,
|
48 |
+
sampling=25,
|
49 |
+
max_token_text_ratio=30,
|
50 |
+
min_token_text_ratio=3)
|
51 |
+
tts_mel = self.flow.inference(token=tts_speech_token,
|
52 |
+
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
53 |
+
prompt_token=flow_prompt_speech_token.to(self.device),
|
54 |
+
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
55 |
+
prompt_feat=prompt_speech_feat.to(self.device),
|
56 |
+
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
57 |
+
embedding=flow_embedding.to(self.device))
|
58 |
+
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
59 |
+
return {'tts_speech': tts_speech}
|
cosyvoice/dataset/__init__.py
ADDED
File without changes
|
cosyvoice/dataset/dataset.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import random
|
17 |
+
import json
|
18 |
+
import math
|
19 |
+
from functools import partial
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import IterableDataset
|
24 |
+
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
25 |
+
|
26 |
+
|
27 |
+
class Processor(IterableDataset):
|
28 |
+
|
29 |
+
def __init__(self, source, f, *args, **kw):
|
30 |
+
assert callable(f)
|
31 |
+
self.source = source
|
32 |
+
self.f = f
|
33 |
+
self.args = args
|
34 |
+
self.kw = kw
|
35 |
+
|
36 |
+
def set_epoch(self, epoch):
|
37 |
+
self.source.set_epoch(epoch)
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
""" Return an iterator over the source dataset processed by the
|
41 |
+
given processor.
|
42 |
+
"""
|
43 |
+
assert self.source is not None
|
44 |
+
assert callable(self.f)
|
45 |
+
return self.f(iter(self.source), *self.args, **self.kw)
|
46 |
+
|
47 |
+
def apply(self, f):
|
48 |
+
assert callable(f)
|
49 |
+
return Processor(self, f, *self.args, **self.kw)
|
50 |
+
|
51 |
+
|
52 |
+
class DistributedSampler:
|
53 |
+
|
54 |
+
def __init__(self, shuffle=True, partition=True):
|
55 |
+
self.epoch = -1
|
56 |
+
self.update()
|
57 |
+
self.shuffle = shuffle
|
58 |
+
self.partition = partition
|
59 |
+
|
60 |
+
def update(self):
|
61 |
+
assert dist.is_available()
|
62 |
+
if dist.is_initialized():
|
63 |
+
self.rank = dist.get_rank()
|
64 |
+
self.world_size = dist.get_world_size()
|
65 |
+
else:
|
66 |
+
self.rank = 0
|
67 |
+
self.world_size = 1
|
68 |
+
worker_info = torch.utils.data.get_worker_info()
|
69 |
+
if worker_info is None:
|
70 |
+
self.worker_id = 0
|
71 |
+
self.num_workers = 1
|
72 |
+
else:
|
73 |
+
self.worker_id = worker_info.id
|
74 |
+
self.num_workers = worker_info.num_workers
|
75 |
+
return dict(rank=self.rank,
|
76 |
+
world_size=self.world_size,
|
77 |
+
worker_id=self.worker_id,
|
78 |
+
num_workers=self.num_workers)
|
79 |
+
|
80 |
+
def set_epoch(self, epoch):
|
81 |
+
self.epoch = epoch
|
82 |
+
|
83 |
+
def sample(self, data):
|
84 |
+
""" Sample data according to rank/world_size/num_workers
|
85 |
+
|
86 |
+
Args:
|
87 |
+
data(List): input data list
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
List: data list after sample
|
91 |
+
"""
|
92 |
+
data = list(range(len(data)))
|
93 |
+
# force datalist even
|
94 |
+
if self.partition:
|
95 |
+
if self.shuffle:
|
96 |
+
random.Random(self.epoch).shuffle(data)
|
97 |
+
if len(data) < self.world_size:
|
98 |
+
data = data * math.ceil(self.world_size / len(data))
|
99 |
+
data = data[:self.world_size]
|
100 |
+
data = data[self.rank::self.world_size]
|
101 |
+
if len(data) < self.num_workers:
|
102 |
+
data = data * math.ceil(self.num_workers / len(data))
|
103 |
+
data = data[:self.num_workers]
|
104 |
+
data = data[self.worker_id::self.num_workers]
|
105 |
+
return data
|
106 |
+
|
107 |
+
|
108 |
+
class DataList(IterableDataset):
|
109 |
+
|
110 |
+
def __init__(self, lists, shuffle=True, partition=True):
|
111 |
+
self.lists = lists
|
112 |
+
self.sampler = DistributedSampler(shuffle, partition)
|
113 |
+
|
114 |
+
def set_epoch(self, epoch):
|
115 |
+
self.sampler.set_epoch(epoch)
|
116 |
+
|
117 |
+
def __iter__(self):
|
118 |
+
sampler_info = self.sampler.update()
|
119 |
+
indexes = self.sampler.sample(self.lists)
|
120 |
+
for index in indexes:
|
121 |
+
data = dict(src=self.lists[index])
|
122 |
+
data.update(sampler_info)
|
123 |
+
yield data
|
124 |
+
|
125 |
+
|
126 |
+
def Dataset(data_list_file,
|
127 |
+
data_pipeline,
|
128 |
+
mode='train',
|
129 |
+
shuffle=True,
|
130 |
+
partition=True,
|
131 |
+
tts_file='',
|
132 |
+
prompt_utt2data=''):
|
133 |
+
""" Construct dataset from arguments
|
134 |
+
|
135 |
+
We have two shuffle stage in the Dataset. The first is global
|
136 |
+
shuffle at shards tar/raw file level. The second is global shuffle
|
137 |
+
at training samples level.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
data_type(str): raw/shard
|
141 |
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
142 |
+
partition(bool): whether to do data partition in terms of rank
|
143 |
+
"""
|
144 |
+
assert mode in ['train', 'inference']
|
145 |
+
lists = read_lists(data_list_file)
|
146 |
+
if mode == 'inference':
|
147 |
+
with open(tts_file) as f:
|
148 |
+
tts_data = json.load(f)
|
149 |
+
utt2lists = read_json_lists(prompt_utt2data)
|
150 |
+
# filter unnecessary file in inference mode
|
151 |
+
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
|
152 |
+
dataset = DataList(lists,
|
153 |
+
shuffle=shuffle,
|
154 |
+
partition=partition)
|
155 |
+
if mode == 'inference':
|
156 |
+
# map partial arg tts_data in inference mode
|
157 |
+
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
158 |
+
for func in data_pipeline:
|
159 |
+
dataset = Processor(dataset, func, mode=mode)
|
160 |
+
return dataset
|
cosyvoice/dataset/processor.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
|
17 |
+
import pyarrow.parquet as pq
|
18 |
+
from io import BytesIO
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
from torch.nn.utils.rnn import pad_sequence
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
torchaudio.set_audio_backend('soundfile')
|
25 |
+
torchaudio.utils.sox_utils.set_buffer_size(16500)
|
26 |
+
|
27 |
+
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
|
28 |
+
|
29 |
+
|
30 |
+
def parquet_opener(data, mode='train', tts_data={}):
|
31 |
+
""" Give url or local file, return file descriptor
|
32 |
+
Inplace operation.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
data(Iterable[str]): url or local file list
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
Iterable[{src, stream}]
|
39 |
+
"""
|
40 |
+
for sample in data:
|
41 |
+
assert 'src' in sample
|
42 |
+
url = sample['src']
|
43 |
+
try:
|
44 |
+
df = pq.read_table(url).to_pandas()
|
45 |
+
for i in range(len(df)):
|
46 |
+
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
47 |
+
continue
|
48 |
+
sample.update(dict(df.loc[i]))
|
49 |
+
if mode == 'train':
|
50 |
+
# NOTE do not return sample directly, must initialize a new dict
|
51 |
+
yield {**sample}
|
52 |
+
else:
|
53 |
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
54 |
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
55 |
+
except Exception as ex:
|
56 |
+
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
57 |
+
|
58 |
+
def filter(data,
|
59 |
+
max_length=10240,
|
60 |
+
min_length=10,
|
61 |
+
token_max_length=200,
|
62 |
+
token_min_length=1,
|
63 |
+
min_output_input_ratio=0.0005,
|
64 |
+
max_output_input_ratio=1,
|
65 |
+
mode='train'):
|
66 |
+
""" Filter sample according to feature and label length
|
67 |
+
Inplace operation.
|
68 |
+
|
69 |
+
Args::
|
70 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
71 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
72 |
+
min_length: drop utterance which is less than min_length(10ms)
|
73 |
+
token_max_length: drop utterance which is greater than
|
74 |
+
token_max_length, especially when use char unit for
|
75 |
+
english modeling
|
76 |
+
token_min_length: drop utterance which is
|
77 |
+
less than token_max_length
|
78 |
+
min_output_input_ratio: minimal ration of
|
79 |
+
token_length / feats_length(10ms)
|
80 |
+
max_output_input_ratio: maximum ration of
|
81 |
+
token_length / feats_length(10ms)
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
Iterable[{key, wav, label, sample_rate}]
|
85 |
+
"""
|
86 |
+
for sample in data:
|
87 |
+
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
88 |
+
del sample['audio_data']
|
89 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
90 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
91 |
+
if num_frames < min_length:
|
92 |
+
continue
|
93 |
+
if num_frames > max_length:
|
94 |
+
continue
|
95 |
+
if len(sample['text_token']) < token_min_length:
|
96 |
+
continue
|
97 |
+
if len(sample['text_token']) > token_max_length:
|
98 |
+
continue
|
99 |
+
if len(sample['speech_token']) == 0:
|
100 |
+
continue
|
101 |
+
if num_frames != 0:
|
102 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
103 |
+
continue
|
104 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
105 |
+
continue
|
106 |
+
yield sample
|
107 |
+
|
108 |
+
|
109 |
+
def resample(data, resample_rate=22050, mode='train'):
|
110 |
+
""" Resample data.
|
111 |
+
Inplace operation.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
115 |
+
resample_rate: target resample rate
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
Iterable[{key, wav, label, sample_rate}]
|
119 |
+
"""
|
120 |
+
for sample in data:
|
121 |
+
assert 'sample_rate' in sample
|
122 |
+
assert 'speech' in sample
|
123 |
+
sample_rate = sample['sample_rate']
|
124 |
+
waveform = sample['speech']
|
125 |
+
if sample_rate != resample_rate:
|
126 |
+
if sample_rate < resample_rate:
|
127 |
+
continue
|
128 |
+
sample['sample_rate'] = resample_rate
|
129 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
130 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
131 |
+
max_val = sample['speech'].abs().max()
|
132 |
+
if max_val > 1:
|
133 |
+
sample['speech'] /= max_val
|
134 |
+
yield sample
|
135 |
+
|
136 |
+
|
137 |
+
def compute_fbank(data,
|
138 |
+
feat_extractor,
|
139 |
+
mode='train'):
|
140 |
+
""" Extract fbank
|
141 |
+
|
142 |
+
Args:
|
143 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
Iterable[{key, feat, label}]
|
147 |
+
"""
|
148 |
+
for sample in data:
|
149 |
+
assert 'sample_rate' in sample
|
150 |
+
assert 'speech' in sample
|
151 |
+
assert 'utt' in sample
|
152 |
+
assert 'text_token' in sample
|
153 |
+
waveform = sample['speech']
|
154 |
+
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
155 |
+
sample['speech_feat'] = mat
|
156 |
+
del sample['speech']
|
157 |
+
yield sample
|
158 |
+
|
159 |
+
|
160 |
+
def parse_embedding(data, normalize, mode='train'):
|
161 |
+
""" Parse utt_embedding/spk_embedding
|
162 |
+
|
163 |
+
Args:
|
164 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
Iterable[{key, feat, label}]
|
168 |
+
"""
|
169 |
+
for sample in data:
|
170 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
171 |
+
sample['spk_embedding'] = torch.stack([torch.tensor(i, dtype=torch.float32) for i in sample['spk_embedding']], dim=0).mean(dim=0)
|
172 |
+
if normalize:
|
173 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
174 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
175 |
+
yield sample
|
176 |
+
|
177 |
+
|
178 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
179 |
+
""" Decode text to chars or BPE
|
180 |
+
Inplace operation
|
181 |
+
|
182 |
+
Args:
|
183 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
187 |
+
"""
|
188 |
+
tokenizer = get_tokenizer()
|
189 |
+
for sample in data:
|
190 |
+
assert 'text' in sample
|
191 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
192 |
+
if mode == 'inference':
|
193 |
+
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
194 |
+
yield sample
|
195 |
+
|
196 |
+
|
197 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
198 |
+
""" Local shuffle the data
|
199 |
+
|
200 |
+
Args:
|
201 |
+
data: Iterable[{key, feat, label}]
|
202 |
+
shuffle_size: buffer size for shuffle
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
Iterable[{key, feat, label}]
|
206 |
+
"""
|
207 |
+
buf = []
|
208 |
+
for sample in data:
|
209 |
+
buf.append(sample)
|
210 |
+
if len(buf) >= shuffle_size:
|
211 |
+
random.shuffle(buf)
|
212 |
+
for x in buf:
|
213 |
+
yield x
|
214 |
+
buf = []
|
215 |
+
# The sample left over
|
216 |
+
random.shuffle(buf)
|
217 |
+
for x in buf:
|
218 |
+
yield x
|
219 |
+
|
220 |
+
|
221 |
+
def sort(data, sort_size=500, mode='train'):
|
222 |
+
""" Sort the data by feature length.
|
223 |
+
Sort is used after shuffle and before batch, so we can group
|
224 |
+
utts with similar lengths into a batch, and `sort_size` should
|
225 |
+
be less than `shuffle_size`
|
226 |
+
|
227 |
+
Args:
|
228 |
+
data: Iterable[{key, feat, label}]
|
229 |
+
sort_size: buffer size for sort
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
Iterable[{key, feat, label}]
|
233 |
+
"""
|
234 |
+
|
235 |
+
buf = []
|
236 |
+
for sample in data:
|
237 |
+
buf.append(sample)
|
238 |
+
if len(buf) >= sort_size:
|
239 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
240 |
+
for x in buf:
|
241 |
+
yield x
|
242 |
+
buf = []
|
243 |
+
# The sample left over
|
244 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
245 |
+
for x in buf:
|
246 |
+
yield x
|
247 |
+
|
248 |
+
|
249 |
+
def static_batch(data, batch_size=16):
|
250 |
+
""" Static batch the data by `batch_size`
|
251 |
+
|
252 |
+
Args:
|
253 |
+
data: Iterable[{key, feat, label}]
|
254 |
+
batch_size: batch size
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
Iterable[List[{key, feat, label}]]
|
258 |
+
"""
|
259 |
+
buf = []
|
260 |
+
for sample in data:
|
261 |
+
buf.append(sample)
|
262 |
+
if len(buf) >= batch_size:
|
263 |
+
yield buf
|
264 |
+
buf = []
|
265 |
+
if len(buf) > 0:
|
266 |
+
yield buf
|
267 |
+
|
268 |
+
|
269 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
270 |
+
""" Dynamic batch the data until the total frames in batch
|
271 |
+
reach `max_frames_in_batch`
|
272 |
+
|
273 |
+
Args:
|
274 |
+
data: Iterable[{key, feat, label}]
|
275 |
+
max_frames_in_batch: max_frames in one batch
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
Iterable[List[{key, feat, label}]]
|
279 |
+
"""
|
280 |
+
buf = []
|
281 |
+
longest_frames = 0
|
282 |
+
for sample in data:
|
283 |
+
assert 'speech_feat' in sample
|
284 |
+
assert isinstance(sample['speech_feat'], torch.Tensor)
|
285 |
+
new_sample_frames = sample['speech_feat'].size(0)
|
286 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
287 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
288 |
+
if frames_after_padding > max_frames_in_batch:
|
289 |
+
yield buf
|
290 |
+
buf = [sample]
|
291 |
+
longest_frames = new_sample_frames
|
292 |
+
else:
|
293 |
+
buf.append(sample)
|
294 |
+
if len(buf) > 0:
|
295 |
+
yield buf
|
296 |
+
|
297 |
+
|
298 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
299 |
+
""" Wrapper for static/dynamic batch
|
300 |
+
"""
|
301 |
+
if mode == 'inference':
|
302 |
+
return static_batch(data, 1)
|
303 |
+
else:
|
304 |
+
if batch_type == 'static':
|
305 |
+
return static_batch(data, batch_size)
|
306 |
+
elif batch_type == 'dynamic':
|
307 |
+
return dynamic_batch(data, max_frames_in_batch)
|
308 |
+
else:
|
309 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
310 |
+
|
311 |
+
|
312 |
+
def padding(data, mode='train'):
|
313 |
+
""" Padding the data into training data
|
314 |
+
|
315 |
+
Args:
|
316 |
+
data: Iterable[List[{key, feat, label}]]
|
317 |
+
|
318 |
+
Returns:
|
319 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
320 |
+
"""
|
321 |
+
for sample in data:
|
322 |
+
assert isinstance(sample, list)
|
323 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
324 |
+
dtype=torch.int32)
|
325 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
326 |
+
|
327 |
+
utts = [sample[i]['utt'] for i in order]
|
328 |
+
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
329 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
330 |
+
speech_token = pad_sequence(speech_token,
|
331 |
+
batch_first=True,
|
332 |
+
padding_value=0)
|
333 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
334 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
335 |
+
speech_feat = pad_sequence(speech_feat,
|
336 |
+
batch_first=True,
|
337 |
+
padding_value=0)
|
338 |
+
text = [sample[i]['text'] for i in order]
|
339 |
+
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
340 |
+
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
341 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
342 |
+
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
343 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
344 |
+
batch = {
|
345 |
+
"utts": utts,
|
346 |
+
"speech_token": speech_token,
|
347 |
+
"speech_token_len": speech_token_len,
|
348 |
+
"speech_feat": speech_feat,
|
349 |
+
"speech_feat_len": speech_feat_len,
|
350 |
+
"text": text,
|
351 |
+
"text_token": text_token,
|
352 |
+
"text_token_len": text_token_len,
|
353 |
+
"utt_embedding": utt_embedding,
|
354 |
+
"spk_embedding": spk_embedding,
|
355 |
+
}
|
356 |
+
if mode == 'inference':
|
357 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
358 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
359 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
360 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
361 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
362 |
+
batch.update({'tts_text': tts_text,
|
363 |
+
'tts_index': tts_index,
|
364 |
+
'tts_text_token': tts_text_token,
|
365 |
+
'tts_text_token_len': tts_text_token_len})
|
366 |
+
yield batch
|
cosyvoice/flow/decoder.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from einops import pack, rearrange, repeat
|
17 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
18 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
19 |
+
|
20 |
+
|
21 |
+
class ConditionalDecoder(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
in_channels,
|
25 |
+
out_channels,
|
26 |
+
channels=(256, 256),
|
27 |
+
dropout=0.05,
|
28 |
+
attention_head_dim=64,
|
29 |
+
n_blocks=1,
|
30 |
+
num_mid_blocks=2,
|
31 |
+
num_heads=4,
|
32 |
+
act_fn="snake",
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
36 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
37 |
+
"""
|
38 |
+
super().__init__()
|
39 |
+
channels = tuple(channels)
|
40 |
+
self.in_channels = in_channels
|
41 |
+
self.out_channels = out_channels
|
42 |
+
|
43 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
44 |
+
time_embed_dim = channels[0] * 4
|
45 |
+
self.time_mlp = TimestepEmbedding(
|
46 |
+
in_channels=in_channels,
|
47 |
+
time_embed_dim=time_embed_dim,
|
48 |
+
act_fn="silu",
|
49 |
+
)
|
50 |
+
self.down_blocks = nn.ModuleList([])
|
51 |
+
self.mid_blocks = nn.ModuleList([])
|
52 |
+
self.up_blocks = nn.ModuleList([])
|
53 |
+
|
54 |
+
output_channel = in_channels
|
55 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
56 |
+
input_channel = output_channel
|
57 |
+
output_channel = channels[i]
|
58 |
+
is_last = i == len(channels) - 1
|
59 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
60 |
+
transformer_blocks = nn.ModuleList(
|
61 |
+
[
|
62 |
+
BasicTransformerBlock(
|
63 |
+
dim=output_channel,
|
64 |
+
num_attention_heads=num_heads,
|
65 |
+
attention_head_dim=attention_head_dim,
|
66 |
+
dropout=dropout,
|
67 |
+
activation_fn=act_fn,
|
68 |
+
)
|
69 |
+
for _ in range(n_blocks)
|
70 |
+
]
|
71 |
+
)
|
72 |
+
downsample = (
|
73 |
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
74 |
+
)
|
75 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
76 |
+
|
77 |
+
for i in range(num_mid_blocks):
|
78 |
+
input_channel = channels[-1]
|
79 |
+
out_channels = channels[-1]
|
80 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
81 |
+
|
82 |
+
transformer_blocks = nn.ModuleList(
|
83 |
+
[
|
84 |
+
BasicTransformerBlock(
|
85 |
+
dim=output_channel,
|
86 |
+
num_attention_heads=num_heads,
|
87 |
+
attention_head_dim=attention_head_dim,
|
88 |
+
dropout=dropout,
|
89 |
+
activation_fn=act_fn,
|
90 |
+
)
|
91 |
+
for _ in range(n_blocks)
|
92 |
+
]
|
93 |
+
)
|
94 |
+
|
95 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
96 |
+
|
97 |
+
channels = channels[::-1] + (channels[0],)
|
98 |
+
for i in range(len(channels) - 1):
|
99 |
+
input_channel = channels[i] * 2
|
100 |
+
output_channel = channels[i + 1]
|
101 |
+
is_last = i == len(channels) - 2
|
102 |
+
resnet = ResnetBlock1D(
|
103 |
+
dim=input_channel,
|
104 |
+
dim_out=output_channel,
|
105 |
+
time_emb_dim=time_embed_dim,
|
106 |
+
)
|
107 |
+
transformer_blocks = nn.ModuleList(
|
108 |
+
[
|
109 |
+
BasicTransformerBlock(
|
110 |
+
dim=output_channel,
|
111 |
+
num_attention_heads=num_heads,
|
112 |
+
attention_head_dim=attention_head_dim,
|
113 |
+
dropout=dropout,
|
114 |
+
activation_fn=act_fn,
|
115 |
+
)
|
116 |
+
for _ in range(n_blocks)
|
117 |
+
]
|
118 |
+
)
|
119 |
+
upsample = (
|
120 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
121 |
+
if not is_last
|
122 |
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
123 |
+
)
|
124 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
125 |
+
self.final_block = Block1D(channels[-1], channels[-1])
|
126 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
127 |
+
self.initialize_weights()
|
128 |
+
|
129 |
+
|
130 |
+
def initialize_weights(self):
|
131 |
+
for m in self.modules():
|
132 |
+
if isinstance(m, nn.Conv1d):
|
133 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
134 |
+
if m.bias is not None:
|
135 |
+
nn.init.constant_(m.bias, 0)
|
136 |
+
elif isinstance(m, nn.GroupNorm):
|
137 |
+
nn.init.constant_(m.weight, 1)
|
138 |
+
nn.init.constant_(m.bias, 0)
|
139 |
+
elif isinstance(m, nn.Linear):
|
140 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
141 |
+
if m.bias is not None:
|
142 |
+
nn.init.constant_(m.bias, 0)
|
143 |
+
|
144 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
145 |
+
"""Forward pass of the UNet1DConditional model.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
149 |
+
mask (_type_): shape (batch_size, 1, time)
|
150 |
+
t (_type_): shape (batch_size)
|
151 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
152 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
153 |
+
|
154 |
+
Raises:
|
155 |
+
ValueError: _description_
|
156 |
+
ValueError: _description_
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
_type_: _description_
|
160 |
+
"""
|
161 |
+
|
162 |
+
t = self.time_embeddings(t)
|
163 |
+
t = self.time_mlp(t)
|
164 |
+
|
165 |
+
x = pack([x, mu], "b * t")[0]
|
166 |
+
|
167 |
+
if spks is not None:
|
168 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
169 |
+
x = pack([x, spks], "b * t")[0]
|
170 |
+
if cond is not None:
|
171 |
+
x = pack([x, cond], "b * t")[0]
|
172 |
+
|
173 |
+
hiddens = []
|
174 |
+
masks = [mask]
|
175 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
176 |
+
mask_down = masks[-1]
|
177 |
+
x = resnet(x, mask_down, t)
|
178 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
179 |
+
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
180 |
+
for transformer_block in transformer_blocks:
|
181 |
+
x = transformer_block(
|
182 |
+
hidden_states=x,
|
183 |
+
attention_mask=attn_mask,
|
184 |
+
timestep=t,
|
185 |
+
)
|
186 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
187 |
+
hiddens.append(x) # Save hidden states for skip connections
|
188 |
+
x = downsample(x * mask_down)
|
189 |
+
masks.append(mask_down[:, :, ::2])
|
190 |
+
masks = masks[:-1]
|
191 |
+
mask_mid = masks[-1]
|
192 |
+
|
193 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
194 |
+
x = resnet(x, mask_mid, t)
|
195 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
196 |
+
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
197 |
+
for transformer_block in transformer_blocks:
|
198 |
+
x = transformer_block(
|
199 |
+
hidden_states=x,
|
200 |
+
attention_mask=attn_mask,
|
201 |
+
timestep=t,
|
202 |
+
)
|
203 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
204 |
+
|
205 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
206 |
+
mask_up = masks.pop()
|
207 |
+
skip = hiddens.pop()
|
208 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
209 |
+
x = resnet(x, mask_up, t)
|
210 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
211 |
+
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
212 |
+
for transformer_block in transformer_blocks:
|
213 |
+
x = transformer_block(
|
214 |
+
hidden_states=x,
|
215 |
+
attention_mask=attn_mask,
|
216 |
+
timestep=t,
|
217 |
+
)
|
218 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
219 |
+
x = upsample(x * mask_up)
|
220 |
+
x = self.final_block(x, mask_up)
|
221 |
+
output = self.final_proj(x * mask_up)
|
222 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
from typing import Dict, Optional
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from torch.nn import functional as F
|
19 |
+
from omegaconf import DictConfig
|
20 |
+
from cosyvoice.utils.mask import make_pad_mask
|
21 |
+
|
22 |
+
|
23 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
24 |
+
def __init__(self,
|
25 |
+
input_size: int = 512,
|
26 |
+
output_size: int = 80,
|
27 |
+
spk_embed_dim: int = 192,
|
28 |
+
output_type: str = "mel",
|
29 |
+
vocab_size: int = 4096,
|
30 |
+
input_frame_rate: int = 50,
|
31 |
+
only_mask_loss: bool = True,
|
32 |
+
encoder: torch.nn.Module = None,
|
33 |
+
length_regulator: torch.nn.Module = None,
|
34 |
+
decoder: torch.nn.Module = None,
|
35 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
36 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
37 |
+
super().__init__()
|
38 |
+
self.input_size = input_size
|
39 |
+
self.output_size = output_size
|
40 |
+
self.decoder_conf = decoder_conf
|
41 |
+
self.mel_feat_conf = mel_feat_conf
|
42 |
+
self.vocab_size = vocab_size
|
43 |
+
self.output_type = output_type
|
44 |
+
self.input_frame_rate = input_frame_rate
|
45 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
46 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
47 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
48 |
+
self.encoder = encoder
|
49 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
50 |
+
self.decoder = decoder
|
51 |
+
self.length_regulator = length_regulator
|
52 |
+
self.only_mask_loss = only_mask_loss
|
53 |
+
|
54 |
+
def forward(
|
55 |
+
self,
|
56 |
+
batch: dict,
|
57 |
+
device: torch.device,
|
58 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
59 |
+
token = batch['speech_token'].to(device)
|
60 |
+
token_len = batch['speech_token_len'].to(device)
|
61 |
+
feat = batch['speech_feat'].to(device)
|
62 |
+
feat_len = batch['speech_feat_len'].to(device)
|
63 |
+
embedding = batch['utt_embedding'].to(device)
|
64 |
+
|
65 |
+
# xvec projection
|
66 |
+
embedding = F.normalize(embedding, dim=1)
|
67 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
68 |
+
|
69 |
+
# concat text and prompt_text
|
70 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
71 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
72 |
+
|
73 |
+
# text encode
|
74 |
+
h, h_lengths = self.encoder(token, token_len)
|
75 |
+
h = self.encoder_proj(h)
|
76 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
77 |
+
|
78 |
+
# get conditions
|
79 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
80 |
+
conds = conds.transpose(1, 2)
|
81 |
+
|
82 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
83 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
84 |
+
loss, _ = self.decoder.compute_loss(
|
85 |
+
feat.transpose(1, 2).contiguous(),
|
86 |
+
mask.unsqueeze(1),
|
87 |
+
h.transpose(1, 2).contiguous(),
|
88 |
+
embedding,
|
89 |
+
cond=conds
|
90 |
+
)
|
91 |
+
return {'loss': loss}
|
92 |
+
|
93 |
+
@torch.inference_mode()
|
94 |
+
def inference(self,
|
95 |
+
token,
|
96 |
+
token_len,
|
97 |
+
prompt_token,
|
98 |
+
prompt_token_len,
|
99 |
+
prompt_feat,
|
100 |
+
prompt_feat_len,
|
101 |
+
embedding):
|
102 |
+
assert token.shape[0] == 1
|
103 |
+
# xvec projection
|
104 |
+
embedding = F.normalize(embedding, dim=1)
|
105 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
106 |
+
|
107 |
+
# concat text and prompt_text
|
108 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
109 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
110 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
111 |
+
|
112 |
+
# text encode
|
113 |
+
h, h_lengths = self.encoder(token, token_len)
|
114 |
+
h = self.encoder_proj(h)
|
115 |
+
feat_len = (token_len / 50 * 22050 / 256).int()
|
116 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
117 |
+
|
118 |
+
# get conditions
|
119 |
+
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
120 |
+
if prompt_feat.shape[1] != 0:
|
121 |
+
for i, j in enumerate(prompt_feat_len):
|
122 |
+
conds[i, :j] = prompt_feat[i]
|
123 |
+
conds = conds.transpose(1, 2)
|
124 |
+
|
125 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
126 |
+
feat = self.decoder(
|
127 |
+
mu=h.transpose(1, 2).contiguous(),
|
128 |
+
mask=mask.unsqueeze(1),
|
129 |
+
spks=embedding,
|
130 |
+
cond=conds,
|
131 |
+
n_timesteps=10
|
132 |
+
)
|
133 |
+
if prompt_feat.shape[1] != 0:
|
134 |
+
feat = feat[:, :, prompt_feat.shape[1]:]
|
135 |
+
return feat
|
cosyvoice/flow/flow_matching.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from matcha.models.components.flow_matching import BASECFM
|
17 |
+
|
18 |
+
class ConditionalCFM(BASECFM):
|
19 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
20 |
+
super().__init__(
|
21 |
+
n_feats=in_channels,
|
22 |
+
cfm_params=cfm_params,
|
23 |
+
n_spks=n_spks,
|
24 |
+
spk_emb_dim=spk_emb_dim,
|
25 |
+
)
|
26 |
+
self.t_scheduler = cfm_params.t_scheduler
|
27 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
28 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
29 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
30 |
+
# Just change the architecture of the estimator here
|
31 |
+
self.estimator = estimator
|
32 |
+
|
33 |
+
@torch.inference_mode()
|
34 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
35 |
+
"""Forward diffusion
|
36 |
+
|
37 |
+
Args:
|
38 |
+
mu (torch.Tensor): output of encoder
|
39 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
40 |
+
mask (torch.Tensor): output_mask
|
41 |
+
shape: (batch_size, 1, mel_timesteps)
|
42 |
+
n_timesteps (int): number of diffusion steps
|
43 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
44 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
45 |
+
shape: (batch_size, spk_emb_dim)
|
46 |
+
cond: Not used but kept for future purposes
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
sample: generated mel-spectrogram
|
50 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
51 |
+
"""
|
52 |
+
z = torch.randn_like(mu) * temperature
|
53 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
54 |
+
if self.t_scheduler == 'cosine':
|
55 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
56 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
57 |
+
|
58 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
59 |
+
"""
|
60 |
+
Fixed euler solver for ODEs.
|
61 |
+
Args:
|
62 |
+
x (torch.Tensor): random noise
|
63 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
64 |
+
shape: (n_timesteps + 1,)
|
65 |
+
mu (torch.Tensor): output of encoder
|
66 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
67 |
+
mask (torch.Tensor): output_mask
|
68 |
+
shape: (batch_size, 1, mel_timesteps)
|
69 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
70 |
+
shape: (batch_size, spk_emb_dim)
|
71 |
+
cond: Not used but kept for future purposes
|
72 |
+
"""
|
73 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
74 |
+
|
75 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
76 |
+
# Or in future might add like a return_all_steps flag
|
77 |
+
sol = []
|
78 |
+
|
79 |
+
for step in range(1, len(t_span)):
|
80 |
+
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
81 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
82 |
+
if self.inference_cfg_rate > 0:
|
83 |
+
cfg_dphi_dt = self.estimator(
|
84 |
+
x, mask,
|
85 |
+
torch.zeros_like(mu), t,
|
86 |
+
torch.zeros_like(spks) if spks is not None else None,
|
87 |
+
torch.zeros_like(cond)
|
88 |
+
)
|
89 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
90 |
+
self.inference_cfg_rate * cfg_dphi_dt)
|
91 |
+
x = x + dt * dphi_dt
|
92 |
+
t = t + dt
|
93 |
+
sol.append(x)
|
94 |
+
if step < len(t_span) - 1:
|
95 |
+
dt = t_span[step + 1] - t
|
96 |
+
|
97 |
+
return sol[-1]
|
98 |
+
|
99 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
100 |
+
"""Computes diffusion loss
|
101 |
+
|
102 |
+
Args:
|
103 |
+
x1 (torch.Tensor): Target
|
104 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
105 |
+
mask (torch.Tensor): target mask
|
106 |
+
shape: (batch_size, 1, mel_timesteps)
|
107 |
+
mu (torch.Tensor): output of encoder
|
108 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
109 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
110 |
+
shape: (batch_size, spk_emb_dim)
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
loss: conditional flow matching loss
|
114 |
+
y: conditional flow
|
115 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
116 |
+
"""
|
117 |
+
b, _, t = mu.shape
|
118 |
+
|
119 |
+
# random timestep
|
120 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
121 |
+
if self.t_scheduler == 'cosine':
|
122 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
123 |
+
# sample noise p(x_0)
|
124 |
+
z = torch.randn_like(x1)
|
125 |
+
|
126 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
127 |
+
u = x1 - (1 - self.sigma_min) * z
|
128 |
+
|
129 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
130 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
131 |
+
return loss, y
|
cosyvoice/flow/length_regulator.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from cosyvoice.utils.mask import make_pad_mask
|
18 |
+
|
19 |
+
|
20 |
+
class InterpolateRegulator(nn.Module):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
channels: int,
|
24 |
+
sampling_ratios: Tuple,
|
25 |
+
out_channels: int = None,
|
26 |
+
groups: int = 1,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
self.sampling_ratios = sampling_ratios
|
30 |
+
out_channels = out_channels or channels
|
31 |
+
model = nn.ModuleList([])
|
32 |
+
if len(sampling_ratios) > 0:
|
33 |
+
for _ in sampling_ratios:
|
34 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
35 |
+
norm = nn.GroupNorm(groups, channels)
|
36 |
+
act = nn.Mish()
|
37 |
+
model.extend([module, norm, act])
|
38 |
+
model.append(
|
39 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
40 |
+
)
|
41 |
+
self.model = nn.Sequential(*model)
|
42 |
+
|
43 |
+
def forward(self, x, ylens=None):
|
44 |
+
# x in (B, T, D)
|
45 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
46 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
47 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
48 |
+
olens = ylens
|
49 |
+
return out * mask, olens
|
cosyvoice/hifigan/f0_predictor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn.utils import weight_norm
|
17 |
+
|
18 |
+
|
19 |
+
class ConvRNNF0Predictor(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
num_class: int = 1,
|
22 |
+
in_channels: int = 80,
|
23 |
+
cond_channels: int = 512
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.num_class = num_class
|
28 |
+
self.condnet = nn.Sequential(
|
29 |
+
weight_norm(
|
30 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
31 |
+
),
|
32 |
+
nn.ELU(),
|
33 |
+
weight_norm(
|
34 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
35 |
+
),
|
36 |
+
nn.ELU(),
|
37 |
+
weight_norm(
|
38 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
39 |
+
),
|
40 |
+
nn.ELU(),
|
41 |
+
weight_norm(
|
42 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
43 |
+
),
|
44 |
+
nn.ELU(),
|
45 |
+
weight_norm(
|
46 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
47 |
+
),
|
48 |
+
nn.ELU(),
|
49 |
+
)
|
50 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
x = self.condnet(x)
|
54 |
+
x = x.transpose(1, 2)
|
55 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""HIFI-GAN"""
|
16 |
+
|
17 |
+
import typing as tp
|
18 |
+
import numpy as np
|
19 |
+
from scipy.signal import get_window
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.nn import Conv1d
|
24 |
+
from torch.nn import ConvTranspose1d
|
25 |
+
from torch.nn.utils import remove_weight_norm
|
26 |
+
from torch.nn.utils import weight_norm
|
27 |
+
from torch.distributions.uniform import Uniform
|
28 |
+
|
29 |
+
from cosyvoice.transformer.activation import Snake
|
30 |
+
from academicodec.utils import get_padding
|
31 |
+
from academicodec.utils import init_weights
|
32 |
+
|
33 |
+
|
34 |
+
"""hifigan based generator implementation.
|
35 |
+
|
36 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
37 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
38 |
+
https://github.com/NVIDIA/BigVGAN
|
39 |
+
|
40 |
+
"""
|
41 |
+
class ResBlock(torch.nn.Module):
|
42 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
channels: int = 512,
|
46 |
+
kernel_size: int = 3,
|
47 |
+
dilations: tp.List[int] = [1, 3, 5],
|
48 |
+
):
|
49 |
+
super(ResBlock, self).__init__()
|
50 |
+
self.convs1 = nn.ModuleList()
|
51 |
+
self.convs2 = nn.ModuleList()
|
52 |
+
|
53 |
+
for dilation in dilations:
|
54 |
+
self.convs1.append(
|
55 |
+
weight_norm(
|
56 |
+
Conv1d(
|
57 |
+
channels,
|
58 |
+
channels,
|
59 |
+
kernel_size,
|
60 |
+
1,
|
61 |
+
dilation=dilation,
|
62 |
+
padding=get_padding(kernel_size, dilation)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
self.convs2.append(
|
67 |
+
weight_norm(
|
68 |
+
Conv1d(
|
69 |
+
channels,
|
70 |
+
channels,
|
71 |
+
kernel_size,
|
72 |
+
1,
|
73 |
+
dilation=1,
|
74 |
+
padding=get_padding(kernel_size, 1)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
)
|
78 |
+
self.convs1.apply(init_weights)
|
79 |
+
self.convs2.apply(init_weights)
|
80 |
+
self.activations1 = nn.ModuleList([
|
81 |
+
Snake(channels, alpha_logscale=False)
|
82 |
+
for _ in range(len(self.convs1))
|
83 |
+
])
|
84 |
+
self.activations2 = nn.ModuleList([
|
85 |
+
Snake(channels, alpha_logscale=False)
|
86 |
+
for _ in range(len(self.convs2))
|
87 |
+
])
|
88 |
+
|
89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90 |
+
for idx in range(len(self.convs1)):
|
91 |
+
xt = self.activations1[idx](x)
|
92 |
+
xt = self.convs1[idx](xt)
|
93 |
+
xt = self.activations2[idx](xt)
|
94 |
+
xt = self.convs2[idx](xt)
|
95 |
+
x = xt + x
|
96 |
+
return x
|
97 |
+
|
98 |
+
def remove_weight_norm(self):
|
99 |
+
for idx in range(len(self.convs1)):
|
100 |
+
remove_weight_norm(self.convs1[idx])
|
101 |
+
remove_weight_norm(self.convs2[idx])
|
102 |
+
|
103 |
+
class SineGen(torch.nn.Module):
|
104 |
+
""" Definition of sine generator
|
105 |
+
SineGen(samp_rate, harmonic_num = 0,
|
106 |
+
sine_amp = 0.1, noise_std = 0.003,
|
107 |
+
voiced_threshold = 0,
|
108 |
+
flag_for_pulse=False)
|
109 |
+
samp_rate: sampling rate in Hz
|
110 |
+
harmonic_num: number of harmonic overtones (default 0)
|
111 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
112 |
+
noise_std: std of Gaussian noise (default 0.003)
|
113 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
114 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
115 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
116 |
+
segment is always sin(np.pi) or cos(0)
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
120 |
+
sine_amp=0.1, noise_std=0.003,
|
121 |
+
voiced_threshold=0):
|
122 |
+
super(SineGen, self).__init__()
|
123 |
+
self.sine_amp = sine_amp
|
124 |
+
self.noise_std = noise_std
|
125 |
+
self.harmonic_num = harmonic_num
|
126 |
+
self.sampling_rate = samp_rate
|
127 |
+
self.voiced_threshold = voiced_threshold
|
128 |
+
|
129 |
+
def _f02uv(self, f0):
|
130 |
+
# generate uv signal
|
131 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
132 |
+
return uv
|
133 |
+
|
134 |
+
@torch.no_grad()
|
135 |
+
def forward(self, f0):
|
136 |
+
"""
|
137 |
+
:param f0: [B, 1, sample_len], Hz
|
138 |
+
:return: [B, 1, sample_len]
|
139 |
+
"""
|
140 |
+
|
141 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
142 |
+
for i in range(self.harmonic_num + 1):
|
143 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
144 |
+
|
145 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
146 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
147 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
148 |
+
phase_vec[:, 0, :] = 0
|
149 |
+
|
150 |
+
# generate sine waveforms
|
151 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
152 |
+
|
153 |
+
# generate uv signal
|
154 |
+
uv = self._f02uv(f0)
|
155 |
+
|
156 |
+
# noise: for unvoiced should be similar to sine_amp
|
157 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
158 |
+
# . for voiced regions is self.noise_std
|
159 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
160 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
161 |
+
|
162 |
+
# first: set the unvoiced part to 0 by uv
|
163 |
+
# then: additive noise
|
164 |
+
sine_waves = sine_waves * uv + noise
|
165 |
+
return sine_waves, uv, noise
|
166 |
+
|
167 |
+
|
168 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
169 |
+
""" SourceModule for hn-nsf
|
170 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
171 |
+
add_noise_std=0.003, voiced_threshod=0)
|
172 |
+
sampling_rate: sampling_rate in Hz
|
173 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
174 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
175 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
176 |
+
note that amplitude of noise in unvoiced is decided
|
177 |
+
by sine_amp
|
178 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
179 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
180 |
+
F0_sampled (batchsize, length, 1)
|
181 |
+
Sine_source (batchsize, length, 1)
|
182 |
+
noise_source (batchsize, length 1)
|
183 |
+
uv (batchsize, length, 1)
|
184 |
+
"""
|
185 |
+
|
186 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
187 |
+
add_noise_std=0.003, voiced_threshod=0):
|
188 |
+
super(SourceModuleHnNSF, self).__init__()
|
189 |
+
|
190 |
+
self.sine_amp = sine_amp
|
191 |
+
self.noise_std = add_noise_std
|
192 |
+
|
193 |
+
# to produce sine waveforms
|
194 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
195 |
+
sine_amp, add_noise_std, voiced_threshod)
|
196 |
+
|
197 |
+
# to merge source harmonics into a single excitation
|
198 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
199 |
+
self.l_tanh = torch.nn.Tanh()
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
"""
|
203 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
204 |
+
F0_sampled (batchsize, length, 1)
|
205 |
+
Sine_source (batchsize, length, 1)
|
206 |
+
noise_source (batchsize, length 1)
|
207 |
+
"""
|
208 |
+
# source for harmonic branch
|
209 |
+
with torch.no_grad():
|
210 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
211 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
212 |
+
uv = uv.transpose(1, 2)
|
213 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
214 |
+
|
215 |
+
# source for noise branch, in the same shape as uv
|
216 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
217 |
+
return sine_merge, noise, uv
|
218 |
+
|
219 |
+
|
220 |
+
class HiFTGenerator(nn.Module):
|
221 |
+
"""
|
222 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
223 |
+
https://arxiv.org/abs/2309.09493
|
224 |
+
"""
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
in_channels: int = 80,
|
228 |
+
base_channels: int = 512,
|
229 |
+
nb_harmonics: int = 8,
|
230 |
+
sampling_rate: int = 22050,
|
231 |
+
nsf_alpha: float = 0.1,
|
232 |
+
nsf_sigma: float = 0.003,
|
233 |
+
nsf_voiced_threshold: float = 10,
|
234 |
+
upsample_rates: tp.List[int] = [8, 8],
|
235 |
+
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
236 |
+
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
237 |
+
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
238 |
+
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
239 |
+
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
240 |
+
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
241 |
+
lrelu_slope: float = 0.1,
|
242 |
+
audio_limit: float = 0.99,
|
243 |
+
f0_predictor: torch.nn.Module = None,
|
244 |
+
):
|
245 |
+
super(HiFTGenerator, self).__init__()
|
246 |
+
|
247 |
+
self.out_channels = 1
|
248 |
+
self.nb_harmonics = nb_harmonics
|
249 |
+
self.sampling_rate = sampling_rate
|
250 |
+
self.istft_params = istft_params
|
251 |
+
self.lrelu_slope = lrelu_slope
|
252 |
+
self.audio_limit = audio_limit
|
253 |
+
|
254 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
255 |
+
self.num_upsamples = len(upsample_rates)
|
256 |
+
self.m_source = SourceModuleHnNSF(
|
257 |
+
sampling_rate=sampling_rate,
|
258 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
259 |
+
harmonic_num=nb_harmonics,
|
260 |
+
sine_amp=nsf_alpha,
|
261 |
+
add_noise_std=nsf_sigma,
|
262 |
+
voiced_threshod=nsf_voiced_threshold)
|
263 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
264 |
+
|
265 |
+
self.conv_pre = weight_norm(
|
266 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
267 |
+
)
|
268 |
+
|
269 |
+
# Up
|
270 |
+
self.ups = nn.ModuleList()
|
271 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
272 |
+
self.ups.append(
|
273 |
+
weight_norm(
|
274 |
+
ConvTranspose1d(
|
275 |
+
base_channels // (2**i),
|
276 |
+
base_channels // (2**(i + 1)),
|
277 |
+
k,
|
278 |
+
u,
|
279 |
+
padding=(k - u) // 2,
|
280 |
+
)
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
# Down
|
285 |
+
self.source_downs = nn.ModuleList()
|
286 |
+
self.source_resblocks = nn.ModuleList()
|
287 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
288 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
289 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
290 |
+
source_resblock_dilation_sizes)):
|
291 |
+
if u == 1:
|
292 |
+
self.source_downs.append(
|
293 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
self.source_downs.append(
|
297 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
298 |
+
)
|
299 |
+
|
300 |
+
self.source_resblocks.append(
|
301 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
302 |
+
)
|
303 |
+
|
304 |
+
self.resblocks = nn.ModuleList()
|
305 |
+
for i in range(len(self.ups)):
|
306 |
+
ch = base_channels // (2**(i + 1))
|
307 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
308 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
309 |
+
|
310 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
311 |
+
self.ups.apply(init_weights)
|
312 |
+
self.conv_post.apply(init_weights)
|
313 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
314 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
315 |
+
self.f0_predictor = f0_predictor
|
316 |
+
|
317 |
+
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
318 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
319 |
+
|
320 |
+
har_source, _, _ = self.m_source(f0)
|
321 |
+
return har_source.transpose(1, 2)
|
322 |
+
|
323 |
+
def _stft(self, x):
|
324 |
+
spec = torch.stft(
|
325 |
+
x,
|
326 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
327 |
+
return_complex=True)
|
328 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
329 |
+
return spec[..., 0], spec[..., 1]
|
330 |
+
|
331 |
+
def _istft(self, magnitude, phase):
|
332 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
333 |
+
real = magnitude * torch.cos(phase)
|
334 |
+
img = magnitude * torch.sin(phase)
|
335 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
336 |
+
return inverse_transform
|
337 |
+
|
338 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
339 |
+
f0 = self.f0_predictor(x)
|
340 |
+
s = self._f02source(f0)
|
341 |
+
|
342 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
343 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
344 |
+
|
345 |
+
x = self.conv_pre(x)
|
346 |
+
for i in range(self.num_upsamples):
|
347 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
348 |
+
x = self.ups[i](x)
|
349 |
+
|
350 |
+
if i == self.num_upsamples - 1:
|
351 |
+
x = self.reflection_pad(x)
|
352 |
+
|
353 |
+
# fusion
|
354 |
+
si = self.source_downs[i](s_stft)
|
355 |
+
si = self.source_resblocks[i](si)
|
356 |
+
x = x + si
|
357 |
+
|
358 |
+
xs = None
|
359 |
+
for j in range(self.num_kernels):
|
360 |
+
if xs is None:
|
361 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
362 |
+
else:
|
363 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
364 |
+
x = xs / self.num_kernels
|
365 |
+
|
366 |
+
x = F.leaky_relu(x)
|
367 |
+
x = self.conv_post(x)
|
368 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
369 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
370 |
+
|
371 |
+
x = self._istft(magnitude, phase)
|
372 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
373 |
+
return x
|
374 |
+
|
375 |
+
def remove_weight_norm(self):
|
376 |
+
print('Removing weight norm...')
|
377 |
+
for l in self.ups:
|
378 |
+
remove_weight_norm(l)
|
379 |
+
for l in self.resblocks:
|
380 |
+
l.remove_weight_norm()
|
381 |
+
remove_weight_norm(self.conv_pre)
|
382 |
+
remove_weight_norm(self.conv_post)
|
383 |
+
self.source_module.remove_weight_norm()
|
384 |
+
for l in self.source_downs:
|
385 |
+
remove_weight_norm(l)
|
386 |
+
for l in self.source_resblocks:
|
387 |
+
l.remove_weight_norm()
|
388 |
+
|
389 |
+
@torch.inference_mode()
|
390 |
+
def inference(self, mel: torch.Tensor) -> torch.Tensor:
|
391 |
+
return self.forward(x=mel)
|
cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Union
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
19 |
+
from cosyvoice.utils.common import IGNORE_ID
|
20 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
21 |
+
from cosyvoice.utils.common import th_accuracy
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerLM(torch.nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
text_encoder_input_size: int,
|
28 |
+
llm_input_size: int,
|
29 |
+
llm_output_size: int,
|
30 |
+
text_token_size: int,
|
31 |
+
speech_token_size: int,
|
32 |
+
text_encoder: torch.nn.Module,
|
33 |
+
llm: torch.nn.Module,
|
34 |
+
length_normalized_loss: bool = True,
|
35 |
+
lsm_weight: float = 0.0,
|
36 |
+
spk_embed_dim: int = 192,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.llm_input_size = llm_input_size
|
40 |
+
self.speech_token_size = speech_token_size
|
41 |
+
# 1. build text token inputs related modules
|
42 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
43 |
+
self.text_encoder = text_encoder
|
44 |
+
self.text_encoder_affine_layer = nn.Linear(
|
45 |
+
self.text_encoder.output_size(),
|
46 |
+
llm_input_size
|
47 |
+
)
|
48 |
+
|
49 |
+
# 2. build speech token language model related modules
|
50 |
+
self.sos_eos = 0
|
51 |
+
self.task_id = 1
|
52 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
53 |
+
self.llm = llm
|
54 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
55 |
+
self.criterion_ce = LabelSmoothingLoss(
|
56 |
+
size=speech_token_size + 1,
|
57 |
+
padding_idx=IGNORE_ID,
|
58 |
+
smoothing=lsm_weight,
|
59 |
+
normalize_length=length_normalized_loss,
|
60 |
+
)
|
61 |
+
|
62 |
+
# 3. [Optional] build speech token related modules
|
63 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
64 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
65 |
+
|
66 |
+
def encode(
|
67 |
+
self,
|
68 |
+
text: torch.Tensor,
|
69 |
+
text_lengths: torch.Tensor,
|
70 |
+
):
|
71 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
72 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
73 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
74 |
+
return encoder_out, encoder_out_lens
|
75 |
+
|
76 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
77 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
78 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
79 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
|
80 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
81 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
82 |
+
return lm_input, lm_input_len
|
83 |
+
|
84 |
+
def forward(
|
85 |
+
self,
|
86 |
+
batch: dict,
|
87 |
+
device: torch.device,
|
88 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
89 |
+
"""
|
90 |
+
Args:
|
91 |
+
text: (B, L, D)
|
92 |
+
text_lengths: (B,)
|
93 |
+
audio: (B, T, N) or (B, T)
|
94 |
+
audio_lengths: (B,)
|
95 |
+
"""
|
96 |
+
text_token = batch['text_token'].to(device)
|
97 |
+
text_token_len = batch['text_token_len'].to(device)
|
98 |
+
speech_token = batch['speech_token'].to(device)
|
99 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
100 |
+
embedding = batch['utt_embedding'].to(device)
|
101 |
+
|
102 |
+
# 1. prepare llm_target
|
103 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
104 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
105 |
+
|
106 |
+
# 1. encode text_token
|
107 |
+
text_token = self.text_embedding(text_token)
|
108 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
109 |
+
|
110 |
+
# 2. embedding projection
|
111 |
+
embedding = F.normalize(embedding, dim=1)
|
112 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
113 |
+
embedding = embedding.unsqueeze(1)
|
114 |
+
|
115 |
+
# 3. eos and task_id
|
116 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
117 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
118 |
+
|
119 |
+
# 4. encode speech_token
|
120 |
+
speech_token = self.speech_embedding(speech_token)
|
121 |
+
|
122 |
+
# 5. unpad and pad
|
123 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
|
124 |
+
|
125 |
+
# 6. run lm forward
|
126 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
127 |
+
logits = self.llm_decoder(lm_output)
|
128 |
+
loss = self.criterion_ce(logits, lm_target)
|
129 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
130 |
+
return {'loss': loss, 'acc': acc}
|
131 |
+
|
132 |
+
def sampling_ids(
|
133 |
+
self,
|
134 |
+
weighted_scores: torch.Tensor,
|
135 |
+
sampling: Union[bool, int, float] = True,
|
136 |
+
beam_size: int = 1,
|
137 |
+
ignore_eos: bool = True,
|
138 |
+
):
|
139 |
+
while True:
|
140 |
+
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
|
141 |
+
top_ids = prob.multinomial(beam_size, replacement=True)
|
142 |
+
top_ids = indices[top_ids]
|
143 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
144 |
+
break
|
145 |
+
return top_ids
|
146 |
+
|
147 |
+
@torch.inference_mode()
|
148 |
+
def inference(
|
149 |
+
self,
|
150 |
+
text: torch.Tensor,
|
151 |
+
text_len: torch.Tensor,
|
152 |
+
prompt_text: torch.Tensor,
|
153 |
+
prompt_text_len: torch.Tensor,
|
154 |
+
prompt_speech_token: torch.Tensor,
|
155 |
+
prompt_speech_token_len: torch.Tensor,
|
156 |
+
embedding: torch.Tensor,
|
157 |
+
beam_size: int = 1,
|
158 |
+
sampling: int = 25,
|
159 |
+
max_token_text_ratio: float = 20,
|
160 |
+
min_token_text_ratio: float = 2,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
device = text.device
|
163 |
+
text = torch.concat([prompt_text, text], dim=1)
|
164 |
+
text_len += prompt_text_len
|
165 |
+
text = self.text_embedding(text)
|
166 |
+
|
167 |
+
# 1. encode text
|
168 |
+
text, text_len = self.encode(text, text_len)
|
169 |
+
|
170 |
+
# 2. encode embedding
|
171 |
+
if embedding.shape[0] != 0:
|
172 |
+
embedding = F.normalize(embedding, dim=1)
|
173 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
174 |
+
embedding = embedding.unsqueeze(dim=1)
|
175 |
+
else:
|
176 |
+
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
177 |
+
|
178 |
+
# 3. concat llm_input
|
179 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
180 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
181 |
+
if prompt_speech_token_len != 0:
|
182 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
183 |
+
else:
|
184 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
185 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
186 |
+
|
187 |
+
# 4. cal min/max_length
|
188 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
189 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
190 |
+
|
191 |
+
# 5. step by step decode
|
192 |
+
out_tokens = []
|
193 |
+
offset = 0
|
194 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
195 |
+
for i in range(max_len):
|
196 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
|
197 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
|
198 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
199 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
|
200 |
+
if top_ids == self.speech_token_size:
|
201 |
+
break
|
202 |
+
out_tokens.append(top_ids)
|
203 |
+
offset += lm_input.size(1)
|
204 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
205 |
+
|
206 |
+
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|
cosyvoice/transformer/__init__.py
ADDED
File without changes
|
cosyvoice/transformer/activation.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# 2020 Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Swish() activation function for Conformer."""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn, sin, pow
|
21 |
+
from torch.nn import Parameter
|
22 |
+
|
23 |
+
|
24 |
+
class Swish(torch.nn.Module):
|
25 |
+
"""Construct an Swish object."""
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
"""Return Swish activation function."""
|
29 |
+
return x * torch.sigmoid(x)
|
30 |
+
|
31 |
+
|
32 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
33 |
+
# LICENSE is in incl_licenses directory.
|
34 |
+
class Snake(nn.Module):
|
35 |
+
'''
|
36 |
+
Implementation of a sine-based periodic activation function
|
37 |
+
Shape:
|
38 |
+
- Input: (B, C, T)
|
39 |
+
- Output: (B, C, T), same shape as the input
|
40 |
+
Parameters:
|
41 |
+
- alpha - trainable parameter
|
42 |
+
References:
|
43 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
44 |
+
https://arxiv.org/abs/2006.08195
|
45 |
+
Examples:
|
46 |
+
>>> a1 = snake(256)
|
47 |
+
>>> x = torch.randn(256)
|
48 |
+
>>> x = a1(x)
|
49 |
+
'''
|
50 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
51 |
+
'''
|
52 |
+
Initialization.
|
53 |
+
INPUT:
|
54 |
+
- in_features: shape of the input
|
55 |
+
- alpha: trainable parameter
|
56 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
57 |
+
alpha will be trained along with the rest of your model.
|
58 |
+
'''
|
59 |
+
super(Snake, self).__init__()
|
60 |
+
self.in_features = in_features
|
61 |
+
|
62 |
+
# initialize alpha
|
63 |
+
self.alpha_logscale = alpha_logscale
|
64 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
65 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
66 |
+
else: # linear scale alphas initialized to ones
|
67 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
68 |
+
|
69 |
+
self.alpha.requires_grad = alpha_trainable
|
70 |
+
|
71 |
+
self.no_div_by_zero = 0.000000001
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
'''
|
75 |
+
Forward pass of the function.
|
76 |
+
Applies the function to the input elementwise.
|
77 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
78 |
+
'''
|
79 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
80 |
+
if self.alpha_logscale:
|
81 |
+
alpha = torch.exp(alpha)
|
82 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
83 |
+
|
84 |
+
return x
|
cosyvoice/transformer/attention.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2022 Xingchen Song ([email protected])
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Multi-Head Attention layer definition."""
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
|
26 |
+
class MultiHeadedAttention(nn.Module):
|
27 |
+
"""Multi-Head Attention layer.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
n_head (int): The number of heads.
|
31 |
+
n_feat (int): The number of features.
|
32 |
+
dropout_rate (float): Dropout rate.
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self,
|
37 |
+
n_head: int,
|
38 |
+
n_feat: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
key_bias: bool = True):
|
41 |
+
"""Construct an MultiHeadedAttention object."""
|
42 |
+
super().__init__()
|
43 |
+
assert n_feat % n_head == 0
|
44 |
+
# We assume d_v always equals d_k
|
45 |
+
self.d_k = n_feat // n_head
|
46 |
+
self.h = n_head
|
47 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
48 |
+
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
49 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
50 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
51 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
52 |
+
|
53 |
+
def forward_qkv(
|
54 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
55 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
56 |
+
"""Transform query, key and value.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
60 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
61 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
torch.Tensor: Transformed query tensor, size
|
65 |
+
(#batch, n_head, time1, d_k).
|
66 |
+
torch.Tensor: Transformed key tensor, size
|
67 |
+
(#batch, n_head, time2, d_k).
|
68 |
+
torch.Tensor: Transformed value tensor, size
|
69 |
+
(#batch, n_head, time2, d_k).
|
70 |
+
|
71 |
+
"""
|
72 |
+
n_batch = query.size(0)
|
73 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
74 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
75 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
76 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
77 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
78 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
79 |
+
|
80 |
+
return q, k, v
|
81 |
+
|
82 |
+
def forward_attention(
|
83 |
+
self,
|
84 |
+
value: torch.Tensor,
|
85 |
+
scores: torch.Tensor,
|
86 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""Compute attention context vector.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
value (torch.Tensor): Transformed value, size
|
92 |
+
(#batch, n_head, time2, d_k).
|
93 |
+
scores (torch.Tensor): Attention score, size
|
94 |
+
(#batch, n_head, time1, time2).
|
95 |
+
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
96 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
100 |
+
weighted by the attention score (#batch, time1, time2).
|
101 |
+
|
102 |
+
"""
|
103 |
+
n_batch = value.size(0)
|
104 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
105 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
106 |
+
# 1st chunk to ease the onnx export.]
|
107 |
+
# 2. pytorch training
|
108 |
+
if mask.size(2) > 0: # time2 > 0
|
109 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
110 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
111 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
112 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
113 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(
|
114 |
+
mask, 0.0) # (batch, head, time1, time2)
|
115 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
116 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
117 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
118 |
+
else:
|
119 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
120 |
+
|
121 |
+
p_attn = self.dropout(attn)
|
122 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
123 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
124 |
+
self.h * self.d_k)
|
125 |
+
) # (batch, time1, d_model)
|
126 |
+
|
127 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
query: torch.Tensor,
|
132 |
+
key: torch.Tensor,
|
133 |
+
value: torch.Tensor,
|
134 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
135 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
136 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
+
"""Compute scaled dot product attention.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
142 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
143 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
144 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
145 |
+
(#batch, time1, time2).
|
146 |
+
1.When applying cross attention between decoder and encoder,
|
147 |
+
the batch padding mask for input is in (#batch, 1, T) shape.
|
148 |
+
2.When applying self attention of encoder,
|
149 |
+
the mask is in (#batch, T, T) shape.
|
150 |
+
3.When applying self attention of decoder,
|
151 |
+
the mask is in (#batch, L, L) shape.
|
152 |
+
4.If the different position in decoder see different block
|
153 |
+
of the encoder, such as Mocha, the passed in mask could be
|
154 |
+
in (#batch, L, T) shape. But there is no such case in current
|
155 |
+
Wenet.
|
156 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
157 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
158 |
+
and `head * d_k == size`
|
159 |
+
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
163 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
164 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
165 |
+
and `head * d_k == size`
|
166 |
+
|
167 |
+
"""
|
168 |
+
q, k, v = self.forward_qkv(query, key, value)
|
169 |
+
|
170 |
+
# NOTE(xcsong):
|
171 |
+
# when export onnx model, for 1st chunk, we feed
|
172 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
173 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
174 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
175 |
+
# and we will always do splitting and
|
176 |
+
# concatnation(this will simplify onnx export). Note that
|
177 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
178 |
+
# when export jit model, for 1st chunk, we always feed
|
179 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
180 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
181 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
182 |
+
# >>> c = torch.cat((a, b), dim=2)
|
183 |
+
# >>> torch.equal(b, c) # True
|
184 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
185 |
+
# >>> torch.equal(d[0], d[1]) # True
|
186 |
+
if cache.size(0) > 0:
|
187 |
+
key_cache, value_cache = torch.split(cache,
|
188 |
+
cache.size(-1) // 2,
|
189 |
+
dim=-1)
|
190 |
+
k = torch.cat([key_cache, k], dim=2)
|
191 |
+
v = torch.cat([value_cache, v], dim=2)
|
192 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
193 |
+
# non-trivial to calculate `next_cache_start` here.
|
194 |
+
new_cache = torch.cat((k, v), dim=-1)
|
195 |
+
|
196 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
197 |
+
return self.forward_attention(v, scores, mask), new_cache
|
198 |
+
|
199 |
+
|
200 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
201 |
+
"""Multi-Head Attention layer with relative position encoding.
|
202 |
+
Paper: https://arxiv.org/abs/1901.02860
|
203 |
+
Args:
|
204 |
+
n_head (int): The number of heads.
|
205 |
+
n_feat (int): The number of features.
|
206 |
+
dropout_rate (float): Dropout rate.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self,
|
210 |
+
n_head: int,
|
211 |
+
n_feat: int,
|
212 |
+
dropout_rate: float,
|
213 |
+
key_bias: bool = True):
|
214 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
215 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
216 |
+
# linear transformation for positional encoding
|
217 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
218 |
+
# these two learnable bias are used in matrix c and matrix d
|
219 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
220 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
221 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
222 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
223 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
224 |
+
|
225 |
+
def rel_shift(self, x):
|
226 |
+
"""Compute relative positional encoding.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
230 |
+
time1 means the length of query vector.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
torch.Tensor: Output tensor.
|
234 |
+
|
235 |
+
"""
|
236 |
+
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
237 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
238 |
+
|
239 |
+
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
240 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
241 |
+
:, :, :, : x.size(-1) // 2 + 1
|
242 |
+
] # only keep the positions from 0 to time2
|
243 |
+
return x
|
244 |
+
|
245 |
+
def forward(
|
246 |
+
self,
|
247 |
+
query: torch.Tensor,
|
248 |
+
key: torch.Tensor,
|
249 |
+
value: torch.Tensor,
|
250 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
251 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
252 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
253 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
254 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
255 |
+
Args:
|
256 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
257 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
258 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
259 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
260 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
261 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
262 |
+
(#batch, time2, size).
|
263 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
264 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
265 |
+
and `head * d_k == size`
|
266 |
+
Returns:
|
267 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
268 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
269 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
270 |
+
and `head * d_k == size`
|
271 |
+
"""
|
272 |
+
q, k, v = self.forward_qkv(query, key, value)
|
273 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
274 |
+
|
275 |
+
# NOTE(xcsong):
|
276 |
+
# when export onnx model, for 1st chunk, we feed
|
277 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
278 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
279 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
280 |
+
# and we will always do splitting and
|
281 |
+
# concatnation(this will simplify onnx export). Note that
|
282 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
283 |
+
# when export jit model, for 1st chunk, we always feed
|
284 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
285 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
286 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
287 |
+
# >>> c = torch.cat((a, b), dim=2)
|
288 |
+
# >>> torch.equal(b, c) # True
|
289 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
290 |
+
# >>> torch.equal(d[0], d[1]) # True
|
291 |
+
if cache.size(0) > 0:
|
292 |
+
key_cache, value_cache = torch.split(cache,
|
293 |
+
cache.size(-1) // 2,
|
294 |
+
dim=-1)
|
295 |
+
k = torch.cat([key_cache, k], dim=2)
|
296 |
+
v = torch.cat([value_cache, v], dim=2)
|
297 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
298 |
+
# non-trivial to calculate `next_cache_start` here.
|
299 |
+
new_cache = torch.cat((k, v), dim=-1)
|
300 |
+
|
301 |
+
n_batch_pos = pos_emb.size(0)
|
302 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
303 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
304 |
+
|
305 |
+
# (batch, head, time1, d_k)
|
306 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
307 |
+
# (batch, head, time1, d_k)
|
308 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
309 |
+
|
310 |
+
# compute attention score
|
311 |
+
# first compute matrix a and matrix c
|
312 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
313 |
+
# (batch, head, time1, time2)
|
314 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
315 |
+
|
316 |
+
# compute matrix b and matrix d
|
317 |
+
# (batch, head, time1, time2)
|
318 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
319 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
320 |
+
if matrix_ac.shape != matrix_bd.shape:
|
321 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
322 |
+
|
323 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
324 |
+
self.d_k) # (batch, head, time1, time2)
|
325 |
+
|
326 |
+
return self.forward_attention(v, scores, mask), new_cache
|
cosyvoice/transformer/convolution.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""ConvolutionModule definition."""
|
17 |
+
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class ConvolutionModule(nn.Module):
|
25 |
+
"""ConvolutionModule in Conformer model."""
|
26 |
+
|
27 |
+
def __init__(self,
|
28 |
+
channels: int,
|
29 |
+
kernel_size: int = 15,
|
30 |
+
activation: nn.Module = nn.ReLU(),
|
31 |
+
norm: str = "batch_norm",
|
32 |
+
causal: bool = False,
|
33 |
+
bias: bool = True):
|
34 |
+
"""Construct an ConvolutionModule object.
|
35 |
+
Args:
|
36 |
+
channels (int): The number of channels of conv layers.
|
37 |
+
kernel_size (int): Kernel size of conv layers.
|
38 |
+
causal (int): Whether use causal convolution or not
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.pointwise_conv1 = nn.Conv1d(
|
43 |
+
channels,
|
44 |
+
2 * channels,
|
45 |
+
kernel_size=1,
|
46 |
+
stride=1,
|
47 |
+
padding=0,
|
48 |
+
bias=bias,
|
49 |
+
)
|
50 |
+
# self.lorder is used to distinguish if it's a causal convolution,
|
51 |
+
# if self.lorder > 0: it's a causal convolution, the input will be
|
52 |
+
# padded with self.lorder frames on the left in forward.
|
53 |
+
# else: it's a symmetrical convolution
|
54 |
+
if causal:
|
55 |
+
padding = 0
|
56 |
+
self.lorder = kernel_size - 1
|
57 |
+
else:
|
58 |
+
# kernel_size should be an odd number for none causal convolution
|
59 |
+
assert (kernel_size - 1) % 2 == 0
|
60 |
+
padding = (kernel_size - 1) // 2
|
61 |
+
self.lorder = 0
|
62 |
+
self.depthwise_conv = nn.Conv1d(
|
63 |
+
channels,
|
64 |
+
channels,
|
65 |
+
kernel_size,
|
66 |
+
stride=1,
|
67 |
+
padding=padding,
|
68 |
+
groups=channels,
|
69 |
+
bias=bias,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert norm in ['batch_norm', 'layer_norm']
|
73 |
+
if norm == "batch_norm":
|
74 |
+
self.use_layer_norm = False
|
75 |
+
self.norm = nn.BatchNorm1d(channels)
|
76 |
+
else:
|
77 |
+
self.use_layer_norm = True
|
78 |
+
self.norm = nn.LayerNorm(channels)
|
79 |
+
|
80 |
+
self.pointwise_conv2 = nn.Conv1d(
|
81 |
+
channels,
|
82 |
+
channels,
|
83 |
+
kernel_size=1,
|
84 |
+
stride=1,
|
85 |
+
padding=0,
|
86 |
+
bias=bias,
|
87 |
+
)
|
88 |
+
self.activation = activation
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
x: torch.Tensor,
|
93 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
94 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
95 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
96 |
+
"""Compute convolution module.
|
97 |
+
Args:
|
98 |
+
x (torch.Tensor): Input tensor (#batch, time, channels).
|
99 |
+
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
100 |
+
(0, 0, 0) means fake mask.
|
101 |
+
cache (torch.Tensor): left context cache, it is only
|
102 |
+
used in causal convolution (#batch, channels, cache_t),
|
103 |
+
(0, 0, 0) meas fake cache.
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: Output tensor (#batch, time, channels).
|
106 |
+
"""
|
107 |
+
# exchange the temporal dimension and the feature dimension
|
108 |
+
x = x.transpose(1, 2) # (#batch, channels, time)
|
109 |
+
|
110 |
+
# mask batch padding
|
111 |
+
if mask_pad.size(2) > 0: # time > 0
|
112 |
+
x.masked_fill_(~mask_pad, 0.0)
|
113 |
+
|
114 |
+
if self.lorder > 0:
|
115 |
+
if cache.size(2) == 0: # cache_t == 0
|
116 |
+
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
117 |
+
else:
|
118 |
+
assert cache.size(0) == x.size(0) # equal batch
|
119 |
+
assert cache.size(1) == x.size(1) # equal channel
|
120 |
+
x = torch.cat((cache, x), dim=2)
|
121 |
+
assert (x.size(2) > self.lorder)
|
122 |
+
new_cache = x[:, :, -self.lorder:]
|
123 |
+
else:
|
124 |
+
# It's better we just return None if no cache is required,
|
125 |
+
# However, for JIT export, here we just fake one tensor instead of
|
126 |
+
# None.
|
127 |
+
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
128 |
+
|
129 |
+
# GLU mechanism
|
130 |
+
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
131 |
+
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
132 |
+
|
133 |
+
# 1D Depthwise Conv
|
134 |
+
x = self.depthwise_conv(x)
|
135 |
+
if self.use_layer_norm:
|
136 |
+
x = x.transpose(1, 2)
|
137 |
+
x = self.activation(self.norm(x))
|
138 |
+
if self.use_layer_norm:
|
139 |
+
x = x.transpose(1, 2)
|
140 |
+
x = self.pointwise_conv2(x)
|
141 |
+
# mask batch padding
|
142 |
+
if mask_pad.size(2) > 0: # time > 0
|
143 |
+
x.masked_fill_(~mask_pad, 0.0)
|
144 |
+
|
145 |
+
return x.transpose(1, 2), new_cache
|
cosyvoice/transformer/decoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Decoder definition."""
|
17 |
+
from typing import Tuple, List, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint as ckpt
|
21 |
+
import logging
|
22 |
+
|
23 |
+
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
24 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
25 |
+
from cosyvoice.utils.class_utils import (
|
26 |
+
COSYVOICE_EMB_CLASSES,
|
27 |
+
COSYVOICE_ATTENTION_CLASSES,
|
28 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
29 |
+
)
|
30 |
+
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
31 |
+
|
32 |
+
|
33 |
+
class TransformerDecoder(torch.nn.Module):
|
34 |
+
"""Base class of Transfomer decoder module.
|
35 |
+
Args:
|
36 |
+
vocab_size: output dim
|
37 |
+
encoder_output_size: dimension of attention
|
38 |
+
attention_heads: the number of heads of multi head attention
|
39 |
+
linear_units: the hidden units number of position-wise feedforward
|
40 |
+
num_blocks: the number of decoder blocks
|
41 |
+
dropout_rate: dropout rate
|
42 |
+
self_attention_dropout_rate: dropout rate for attention
|
43 |
+
input_layer: input layer type
|
44 |
+
use_output_layer: whether to use output layer
|
45 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
46 |
+
normalize_before:
|
47 |
+
True: use layer_norm before each sub-block of a layer.
|
48 |
+
False: use layer_norm after each sub-block of a layer.
|
49 |
+
src_attention: if false, encoder-decoder cross attention is not
|
50 |
+
applied, such as CIF model
|
51 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
52 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
53 |
+
checkpointed segment during backward.
|
54 |
+
tie_word_embedding: Tie or clone module weights depending of whether we are
|
55 |
+
using TorchScript or not
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
vocab_size: int,
|
61 |
+
encoder_output_size: int,
|
62 |
+
attention_heads: int = 4,
|
63 |
+
linear_units: int = 2048,
|
64 |
+
num_blocks: int = 6,
|
65 |
+
dropout_rate: float = 0.1,
|
66 |
+
positional_dropout_rate: float = 0.1,
|
67 |
+
self_attention_dropout_rate: float = 0.0,
|
68 |
+
src_attention_dropout_rate: float = 0.0,
|
69 |
+
input_layer: str = "embed",
|
70 |
+
use_output_layer: bool = True,
|
71 |
+
normalize_before: bool = True,
|
72 |
+
src_attention: bool = True,
|
73 |
+
key_bias: bool = True,
|
74 |
+
activation_type: str = "relu",
|
75 |
+
gradient_checkpointing: bool = False,
|
76 |
+
tie_word_embedding: bool = False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
attention_dim = encoder_output_size
|
80 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
81 |
+
|
82 |
+
self.embed = torch.nn.Sequential(
|
83 |
+
torch.nn.Identity() if input_layer == "no_pos" else
|
84 |
+
torch.nn.Embedding(vocab_size, attention_dim),
|
85 |
+
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
86 |
+
positional_dropout_rate),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.normalize_before = normalize_before
|
90 |
+
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
91 |
+
self.use_output_layer = use_output_layer
|
92 |
+
if use_output_layer:
|
93 |
+
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
94 |
+
else:
|
95 |
+
self.output_layer = torch.nn.Identity()
|
96 |
+
self.num_blocks = num_blocks
|
97 |
+
self.decoders = torch.nn.ModuleList([
|
98 |
+
DecoderLayer(
|
99 |
+
attention_dim,
|
100 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
101 |
+
attention_heads, attention_dim,
|
102 |
+
self_attention_dropout_rate, key_bias),
|
103 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
104 |
+
attention_heads, attention_dim, src_attention_dropout_rate,
|
105 |
+
key_bias) if src_attention else None,
|
106 |
+
PositionwiseFeedForward(attention_dim, linear_units,
|
107 |
+
dropout_rate, activation),
|
108 |
+
dropout_rate,
|
109 |
+
normalize_before,
|
110 |
+
) for _ in range(self.num_blocks)
|
111 |
+
])
|
112 |
+
|
113 |
+
self.gradient_checkpointing = gradient_checkpointing
|
114 |
+
self.tie_word_embedding = tie_word_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
memory: torch.Tensor,
|
119 |
+
memory_mask: torch.Tensor,
|
120 |
+
ys_in_pad: torch.Tensor,
|
121 |
+
ys_in_lens: torch.Tensor,
|
122 |
+
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
123 |
+
reverse_weight: float = 0.0,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
125 |
+
"""Forward decoder.
|
126 |
+
Args:
|
127 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
128 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
129 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
130 |
+
ys_in_lens: input lengths of this batch (batch)
|
131 |
+
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
132 |
+
with bidirectional decoder
|
133 |
+
reverse_weight: not used in transformer decoder, in order to unify
|
134 |
+
api with bidirectional decode
|
135 |
+
Returns:
|
136 |
+
(tuple): tuple containing:
|
137 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
138 |
+
vocab_size) if use_output_layer is True,
|
139 |
+
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
140 |
+
olens: (batch, )
|
141 |
+
NOTE(xcsong):
|
142 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
143 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
144 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
145 |
+
"""
|
146 |
+
tgt = ys_in_pad
|
147 |
+
maxlen = tgt.size(1)
|
148 |
+
# tgt_mask: (B, 1, L)
|
149 |
+
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
150 |
+
tgt_mask = tgt_mask.to(tgt.device)
|
151 |
+
# m: (1, L, L)
|
152 |
+
m = subsequent_mask(tgt_mask.size(-1),
|
153 |
+
device=tgt_mask.device).unsqueeze(0)
|
154 |
+
# tgt_mask: (B, L, L)
|
155 |
+
tgt_mask = tgt_mask & m
|
156 |
+
x, _ = self.embed(tgt)
|
157 |
+
if self.gradient_checkpointing and self.training:
|
158 |
+
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
159 |
+
memory_mask)
|
160 |
+
else:
|
161 |
+
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
162 |
+
if self.normalize_before:
|
163 |
+
x = self.after_norm(x)
|
164 |
+
if self.use_output_layer:
|
165 |
+
x = self.output_layer(x)
|
166 |
+
olens = tgt_mask.sum(1)
|
167 |
+
return x, torch.tensor(0.0), olens
|
168 |
+
|
169 |
+
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
170 |
+
memory: torch.Tensor,
|
171 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
172 |
+
for layer in self.decoders:
|
173 |
+
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
174 |
+
memory_mask)
|
175 |
+
return x
|
176 |
+
|
177 |
+
@torch.jit.ignore(drop=True)
|
178 |
+
def forward_layers_checkpointed(self, x: torch.Tensor,
|
179 |
+
tgt_mask: torch.Tensor,
|
180 |
+
memory: torch.Tensor,
|
181 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
182 |
+
for layer in self.decoders:
|
183 |
+
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
184 |
+
layer.__call__, x, tgt_mask, memory, memory_mask)
|
185 |
+
return x
|
186 |
+
|
187 |
+
def forward_one_step(
|
188 |
+
self,
|
189 |
+
memory: torch.Tensor,
|
190 |
+
memory_mask: torch.Tensor,
|
191 |
+
tgt: torch.Tensor,
|
192 |
+
tgt_mask: torch.Tensor,
|
193 |
+
cache: Optional[List[torch.Tensor]] = None,
|
194 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
195 |
+
"""Forward one step.
|
196 |
+
This is only used for decoding.
|
197 |
+
Args:
|
198 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
199 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
200 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
201 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
202 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
203 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
204 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
205 |
+
Returns:
|
206 |
+
y, cache: NN output value and cache per `self.decoders`.
|
207 |
+
y.shape` is (batch, maxlen_out, token)
|
208 |
+
"""
|
209 |
+
x, _ = self.embed(tgt)
|
210 |
+
new_cache = []
|
211 |
+
for i, decoder in enumerate(self.decoders):
|
212 |
+
if cache is None:
|
213 |
+
c = None
|
214 |
+
else:
|
215 |
+
c = cache[i]
|
216 |
+
x, tgt_mask, memory, memory_mask = decoder(x,
|
217 |
+
tgt_mask,
|
218 |
+
memory,
|
219 |
+
memory_mask,
|
220 |
+
cache=c)
|
221 |
+
new_cache.append(x)
|
222 |
+
if self.normalize_before:
|
223 |
+
y = self.after_norm(x[:, -1])
|
224 |
+
else:
|
225 |
+
y = x[:, -1]
|
226 |
+
if self.use_output_layer:
|
227 |
+
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
228 |
+
return y, new_cache
|
229 |
+
|
230 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
231 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
232 |
+
depending of whether we are using TorchScript or not"""
|
233 |
+
if not self.use_output_layer:
|
234 |
+
return
|
235 |
+
if jit_mode:
|
236 |
+
logging.info("clone emb.weight to output.weight")
|
237 |
+
self.output_layer.weight = torch.nn.Parameter(
|
238 |
+
self.embed[0].weight.clone())
|
239 |
+
else:
|
240 |
+
logging.info("tie emb.weight with output.weight")
|
241 |
+
self.output_layer.weight = self.embed[0].weight
|
242 |
+
|
243 |
+
if getattr(self.output_layer, "bias", None) is not None:
|
244 |
+
self.output_layer.bias.data = torch.nn.functional.pad(
|
245 |
+
self.output_layer.bias.data,
|
246 |
+
(
|
247 |
+
0,
|
248 |
+
self.output_layer.weight.shape[0] -
|
249 |
+
self.output_layer.bias.shape[0],
|
250 |
+
),
|
251 |
+
"constant",
|
252 |
+
0,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
class BiTransformerDecoder(torch.nn.Module):
|
257 |
+
"""Base class of Transfomer decoder module.
|
258 |
+
Args:
|
259 |
+
vocab_size: output dim
|
260 |
+
encoder_output_size: dimension of attention
|
261 |
+
attention_heads: the number of heads of multi head attention
|
262 |
+
linear_units: the hidden units number of position-wise feedforward
|
263 |
+
num_blocks: the number of decoder blocks
|
264 |
+
r_num_blocks: the number of right to left decoder blocks
|
265 |
+
dropout_rate: dropout rate
|
266 |
+
self_attention_dropout_rate: dropout rate for attention
|
267 |
+
input_layer: input layer type
|
268 |
+
use_output_layer: whether to use output layer
|
269 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
270 |
+
normalize_before:
|
271 |
+
True: use layer_norm before each sub-block of a layer.
|
272 |
+
False: use layer_norm after each sub-block of a layer.
|
273 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
vocab_size: int,
|
279 |
+
encoder_output_size: int,
|
280 |
+
attention_heads: int = 4,
|
281 |
+
linear_units: int = 2048,
|
282 |
+
num_blocks: int = 6,
|
283 |
+
r_num_blocks: int = 0,
|
284 |
+
dropout_rate: float = 0.1,
|
285 |
+
positional_dropout_rate: float = 0.1,
|
286 |
+
self_attention_dropout_rate: float = 0.0,
|
287 |
+
src_attention_dropout_rate: float = 0.0,
|
288 |
+
input_layer: str = "embed",
|
289 |
+
use_output_layer: bool = True,
|
290 |
+
normalize_before: bool = True,
|
291 |
+
key_bias: bool = True,
|
292 |
+
gradient_checkpointing: bool = False,
|
293 |
+
tie_word_embedding: bool = False,
|
294 |
+
):
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.tie_word_embedding = tie_word_embedding
|
298 |
+
self.left_decoder = TransformerDecoder(
|
299 |
+
vocab_size,
|
300 |
+
encoder_output_size,
|
301 |
+
attention_heads,
|
302 |
+
linear_units,
|
303 |
+
num_blocks,
|
304 |
+
dropout_rate,
|
305 |
+
positional_dropout_rate,
|
306 |
+
self_attention_dropout_rate,
|
307 |
+
src_attention_dropout_rate,
|
308 |
+
input_layer,
|
309 |
+
use_output_layer,
|
310 |
+
normalize_before,
|
311 |
+
key_bias=key_bias,
|
312 |
+
gradient_checkpointing=gradient_checkpointing,
|
313 |
+
tie_word_embedding=tie_word_embedding)
|
314 |
+
|
315 |
+
self.right_decoder = TransformerDecoder(
|
316 |
+
vocab_size,
|
317 |
+
encoder_output_size,
|
318 |
+
attention_heads,
|
319 |
+
linear_units,
|
320 |
+
r_num_blocks,
|
321 |
+
dropout_rate,
|
322 |
+
positional_dropout_rate,
|
323 |
+
self_attention_dropout_rate,
|
324 |
+
src_attention_dropout_rate,
|
325 |
+
input_layer,
|
326 |
+
use_output_layer,
|
327 |
+
normalize_before,
|
328 |
+
key_bias=key_bias,
|
329 |
+
gradient_checkpointing=gradient_checkpointing,
|
330 |
+
tie_word_embedding=tie_word_embedding)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
memory: torch.Tensor,
|
335 |
+
memory_mask: torch.Tensor,
|
336 |
+
ys_in_pad: torch.Tensor,
|
337 |
+
ys_in_lens: torch.Tensor,
|
338 |
+
r_ys_in_pad: torch.Tensor,
|
339 |
+
reverse_weight: float = 0.0,
|
340 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
341 |
+
"""Forward decoder.
|
342 |
+
Args:
|
343 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
344 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
345 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
346 |
+
ys_in_lens: input lengths of this batch (batch)
|
347 |
+
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
348 |
+
used for right to left decoder
|
349 |
+
reverse_weight: used for right to left decoder
|
350 |
+
Returns:
|
351 |
+
(tuple): tuple containing:
|
352 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
353 |
+
vocab_size) if use_output_layer is True,
|
354 |
+
r_x: x: decoded token score (right to left decoder)
|
355 |
+
before softmax (batch, maxlen_out, vocab_size)
|
356 |
+
if use_output_layer is True,
|
357 |
+
olens: (batch, )
|
358 |
+
"""
|
359 |
+
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
360 |
+
ys_in_lens)
|
361 |
+
r_x = torch.tensor(0.0)
|
362 |
+
if reverse_weight > 0.0:
|
363 |
+
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
364 |
+
r_ys_in_pad, ys_in_lens)
|
365 |
+
return l_x, r_x, olens
|
366 |
+
|
367 |
+
def forward_one_step(
|
368 |
+
self,
|
369 |
+
memory: torch.Tensor,
|
370 |
+
memory_mask: torch.Tensor,
|
371 |
+
tgt: torch.Tensor,
|
372 |
+
tgt_mask: torch.Tensor,
|
373 |
+
cache: Optional[List[torch.Tensor]] = None,
|
374 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
375 |
+
"""Forward one step.
|
376 |
+
This is only used for decoding.
|
377 |
+
Args:
|
378 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
379 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
380 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
381 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
382 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
383 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
384 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
385 |
+
Returns:
|
386 |
+
y, cache: NN output value and cache per `self.decoders`.
|
387 |
+
y.shape` is (batch, maxlen_out, token)
|
388 |
+
"""
|
389 |
+
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
390 |
+
tgt_mask, cache)
|
391 |
+
|
392 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
393 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
394 |
+
depending of whether we are using TorchScript or not"""
|
395 |
+
self.left_decoder.tie_or_clone_weights(jit_mode)
|
396 |
+
self.right_decoder.tie_or_clone_weights(jit_mode)
|
cosyvoice/transformer/decoder_layer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Decoder self-attention layer definition."""
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
|
22 |
+
class DecoderLayer(nn.Module):
|
23 |
+
"""Single decoder layer module.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
size (int): Input dimension.
|
27 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
28 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
29 |
+
src_attn (torch.nn.Module): Inter-attention module instance.
|
30 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
31 |
+
If `None` is passed, Inter-attention is not used, such as
|
32 |
+
CIF, GPT, and other decoder only model.
|
33 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
34 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
35 |
+
dropout_rate (float): Dropout rate.
|
36 |
+
normalize_before (bool):
|
37 |
+
True: use layer_norm before each sub-block.
|
38 |
+
False: to use layer_norm after each sub-block.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
size: int,
|
44 |
+
self_attn: nn.Module,
|
45 |
+
src_attn: Optional[nn.Module],
|
46 |
+
feed_forward: nn.Module,
|
47 |
+
dropout_rate: float,
|
48 |
+
normalize_before: bool = True,
|
49 |
+
):
|
50 |
+
"""Construct an DecoderLayer object."""
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.self_attn = self_attn
|
54 |
+
self.src_attn = src_attn
|
55 |
+
self.feed_forward = feed_forward
|
56 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
57 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
58 |
+
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
59 |
+
self.dropout = nn.Dropout(dropout_rate)
|
60 |
+
self.normalize_before = normalize_before
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
tgt: torch.Tensor,
|
65 |
+
tgt_mask: torch.Tensor,
|
66 |
+
memory: torch.Tensor,
|
67 |
+
memory_mask: torch.Tensor,
|
68 |
+
cache: Optional[torch.Tensor] = None
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
70 |
+
"""Compute decoded features.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
74 |
+
tgt_mask (torch.Tensor): Mask for input tensor
|
75 |
+
(#batch, maxlen_out).
|
76 |
+
memory (torch.Tensor): Encoded memory
|
77 |
+
(#batch, maxlen_in, size).
|
78 |
+
memory_mask (torch.Tensor): Encoded memory mask
|
79 |
+
(#batch, maxlen_in).
|
80 |
+
cache (torch.Tensor): cached tensors.
|
81 |
+
(#batch, maxlen_out - 1, size).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
85 |
+
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
86 |
+
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
87 |
+
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = tgt
|
91 |
+
if self.normalize_before:
|
92 |
+
tgt = self.norm1(tgt)
|
93 |
+
|
94 |
+
if cache is None:
|
95 |
+
tgt_q = tgt
|
96 |
+
tgt_q_mask = tgt_mask
|
97 |
+
else:
|
98 |
+
# compute only the last frame query keeping dim: max_time_out -> 1
|
99 |
+
assert cache.shape == (
|
100 |
+
tgt.shape[0],
|
101 |
+
tgt.shape[1] - 1,
|
102 |
+
self.size,
|
103 |
+
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
104 |
+
tgt_q = tgt[:, -1:, :]
|
105 |
+
residual = residual[:, -1:, :]
|
106 |
+
tgt_q_mask = tgt_mask[:, -1:, :]
|
107 |
+
|
108 |
+
x = residual + self.dropout(
|
109 |
+
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
110 |
+
if not self.normalize_before:
|
111 |
+
x = self.norm1(x)
|
112 |
+
|
113 |
+
if self.src_attn is not None:
|
114 |
+
residual = x
|
115 |
+
if self.normalize_before:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = residual + self.dropout(
|
118 |
+
self.src_attn(x, memory, memory, memory_mask)[0])
|
119 |
+
if not self.normalize_before:
|
120 |
+
x = self.norm2(x)
|
121 |
+
|
122 |
+
residual = x
|
123 |
+
if self.normalize_before:
|
124 |
+
x = self.norm3(x)
|
125 |
+
x = residual + self.dropout(self.feed_forward(x))
|
126 |
+
if not self.normalize_before:
|
127 |
+
x = self.norm3(x)
|
128 |
+
|
129 |
+
if cache is not None:
|
130 |
+
x = torch.cat([cache, x], dim=1)
|
131 |
+
|
132 |
+
return x, tgt_mask, memory, memory_mask
|
cosyvoice/transformer/embedding.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Positonal Encoding Module."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
|
26 |
+
class PositionalEncoding(torch.nn.Module):
|
27 |
+
"""Positional encoding.
|
28 |
+
|
29 |
+
:param int d_model: embedding dim
|
30 |
+
:param float dropout_rate: dropout rate
|
31 |
+
:param int max_len: maximum input length
|
32 |
+
|
33 |
+
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
34 |
+
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
d_model: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
max_len: int = 5000,
|
41 |
+
reverse: bool = False):
|
42 |
+
"""Construct an PositionalEncoding object."""
|
43 |
+
super().__init__()
|
44 |
+
self.d_model = d_model
|
45 |
+
self.xscale = math.sqrt(self.d_model)
|
46 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
47 |
+
self.max_len = max_len
|
48 |
+
|
49 |
+
self.pe = torch.zeros(self.max_len, self.d_model)
|
50 |
+
position = torch.arange(0, self.max_len,
|
51 |
+
dtype=torch.float32).unsqueeze(1)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
|
54 |
+
-(math.log(10000.0) / self.d_model))
|
55 |
+
self.pe[:, 0::2] = torch.sin(position * div_term)
|
56 |
+
self.pe[:, 1::2] = torch.cos(position * div_term)
|
57 |
+
self.pe = self.pe.unsqueeze(0)
|
58 |
+
|
59 |
+
def forward(self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
offset: Union[int, torch.Tensor] = 0) \
|
62 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
"""Add positional encoding.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
67 |
+
offset (int, torch.tensor): position offset
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
71 |
+
torch.Tensor: for compatibility to RelPositionalEncoding
|
72 |
+
"""
|
73 |
+
|
74 |
+
self.pe = self.pe.to(x.device)
|
75 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
76 |
+
x = x * self.xscale + pos_emb
|
77 |
+
return self.dropout(x), self.dropout(pos_emb)
|
78 |
+
|
79 |
+
def position_encoding(self,
|
80 |
+
offset: Union[int, torch.Tensor],
|
81 |
+
size: int,
|
82 |
+
apply_dropout: bool = True) -> torch.Tensor:
|
83 |
+
""" For getting encoding in a streaming fashion
|
84 |
+
|
85 |
+
Attention!!!!!
|
86 |
+
we apply dropout only once at the whole utterance level in a none
|
87 |
+
streaming way, but will call this function several times with
|
88 |
+
increasing input size in a streaming scenario, so the dropout will
|
89 |
+
be applied several times.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
offset (int or torch.tensor): start offset
|
93 |
+
size (int): required size of position encoding
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
torch.Tensor: Corresponding encoding
|
97 |
+
"""
|
98 |
+
# How to subscript a Union type:
|
99 |
+
# https://github.com/pytorch/pytorch/issues/69434
|
100 |
+
if isinstance(offset, int):
|
101 |
+
assert offset + size <= self.max_len
|
102 |
+
pos_emb = self.pe[:, offset:offset + size]
|
103 |
+
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
104 |
+
assert offset + size <= self.max_len
|
105 |
+
pos_emb = self.pe[:, offset:offset + size]
|
106 |
+
else: # for batched streaming decoding on GPU
|
107 |
+
assert torch.max(offset) + size <= self.max_len
|
108 |
+
index = offset.unsqueeze(1) + \
|
109 |
+
torch.arange(0, size).to(offset.device) # B X T
|
110 |
+
flag = index > 0
|
111 |
+
# remove negative offset
|
112 |
+
index = index * flag
|
113 |
+
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
114 |
+
|
115 |
+
if apply_dropout:
|
116 |
+
pos_emb = self.dropout(pos_emb)
|
117 |
+
return pos_emb
|
118 |
+
|
119 |
+
|
120 |
+
class RelPositionalEncoding(PositionalEncoding):
|
121 |
+
"""Relative positional encoding module.
|
122 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
123 |
+
Args:
|
124 |
+
d_model (int): Embedding dimension.
|
125 |
+
dropout_rate (float): Dropout rate.
|
126 |
+
max_len (int): Maximum input length.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
130 |
+
"""Initialize class."""
|
131 |
+
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
132 |
+
|
133 |
+
def forward(self,
|
134 |
+
x: torch.Tensor,
|
135 |
+
offset: Union[int, torch.Tensor] = 0) \
|
136 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
137 |
+
"""Compute positional encoding.
|
138 |
+
Args:
|
139 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
140 |
+
Returns:
|
141 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
142 |
+
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
143 |
+
"""
|
144 |
+
self.pe = self.pe.to(x.device)
|
145 |
+
x = x * self.xscale
|
146 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
147 |
+
return self.dropout(x), self.dropout(pos_emb)
|
148 |
+
|
149 |
+
|
150 |
+
class WhisperPositionalEncoding(PositionalEncoding):
|
151 |
+
""" Sinusoids position encoding used in openai-whisper.encoder
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
|
155 |
+
super().__init__(d_model, dropout_rate, max_len)
|
156 |
+
self.xscale = 1.0
|
157 |
+
log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
|
158 |
+
inv_timescales = torch.exp(-log_timescale_increment *
|
159 |
+
torch.arange(d_model // 2))
|
160 |
+
scaled_time = torch.arange(max_len)[:, np.newaxis] * \
|
161 |
+
inv_timescales[np.newaxis, :]
|
162 |
+
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
163 |
+
delattr(self, "pe")
|
164 |
+
self.register_buffer("pe", pe.unsqueeze(0))
|
165 |
+
|
166 |
+
|
167 |
+
class LearnablePositionalEncoding(PositionalEncoding):
|
168 |
+
""" Learnable position encoding used in openai-whisper.decoder
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
|
172 |
+
super().__init__(d_model, dropout_rate, max_len)
|
173 |
+
# NOTE(xcsong): overwrite self.pe & self.xscale
|
174 |
+
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
|
175 |
+
self.xscale = 1.0
|
176 |
+
|
177 |
+
|
178 |
+
class NoPositionalEncoding(torch.nn.Module):
|
179 |
+
""" No position encoding
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, d_model: int, dropout_rate: float):
|
183 |
+
super().__init__()
|
184 |
+
self.d_model = d_model
|
185 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
186 |
+
|
187 |
+
def forward(self,
|
188 |
+
x: torch.Tensor,
|
189 |
+
offset: Union[int, torch.Tensor] = 0) \
|
190 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
191 |
+
""" Just return zero vector for interface compatibility
|
192 |
+
"""
|
193 |
+
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
194 |
+
return self.dropout(x), pos_emb
|
195 |
+
|
196 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
197 |
+
size: int) -> torch.Tensor:
|
198 |
+
return torch.zeros(1, size, self.d_model)
|
199 |
+
|
200 |
+
|
201 |
+
class EspnetRelPositionalEncoding(torch.nn.Module):
|
202 |
+
"""Relative positional encoding module (new implementation).
|
203 |
+
|
204 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
205 |
+
|
206 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
207 |
+
|
208 |
+
Args:
|
209 |
+
d_model (int): Embedding dimension.
|
210 |
+
dropout_rate (float): Dropout rate.
|
211 |
+
max_len (int): Maximum input length.
|
212 |
+
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
216 |
+
"""Construct an PositionalEncoding object."""
|
217 |
+
super(EspnetRelPositionalEncoding, self).__init__()
|
218 |
+
self.d_model = d_model
|
219 |
+
self.xscale = math.sqrt(self.d_model)
|
220 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
221 |
+
self.pe = None
|
222 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
223 |
+
|
224 |
+
def extend_pe(self, x):
|
225 |
+
"""Reset the positional encodings."""
|
226 |
+
if self.pe is not None:
|
227 |
+
# self.pe contains both positive and negative parts
|
228 |
+
# the length of self.pe is 2 * input_len - 1
|
229 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
230 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
231 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
232 |
+
return
|
233 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
234 |
+
# position of key vector. We use position relative positions when keys
|
235 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
236 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
237 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
238 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
239 |
+
div_term = torch.exp(
|
240 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
241 |
+
* -(math.log(10000.0) / self.d_model)
|
242 |
+
)
|
243 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
244 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
245 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
246 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
247 |
+
|
248 |
+
# Reserve the order of positive indices and concat both positive and
|
249 |
+
# negative indices. This is used to support the shifting trick
|
250 |
+
# as in https://arxiv.org/abs/1901.02860
|
251 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
252 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
253 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
254 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
255 |
+
|
256 |
+
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
|
257 |
+
"""Add positional encoding.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
264 |
+
|
265 |
+
"""
|
266 |
+
self.extend_pe(x)
|
267 |
+
x = x * self.xscale
|
268 |
+
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
|
269 |
+
return self.dropout(x), self.dropout(pos_emb)
|
270 |
+
|
271 |
+
def position_encoding(self,
|
272 |
+
offset: Union[int, torch.Tensor],
|
273 |
+
size: int) -> torch.Tensor:
|
274 |
+
""" For getting encoding in a streaming fashion
|
275 |
+
|
276 |
+
Attention!!!!!
|
277 |
+
we apply dropout only once at the whole utterance level in a none
|
278 |
+
streaming way, but will call this function several times with
|
279 |
+
increasing input size in a streaming scenario, so the dropout will
|
280 |
+
be applied several times.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
offset (int or torch.tensor): start offset
|
284 |
+
size (int): required size of position encoding
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
torch.Tensor: Corresponding encoding
|
288 |
+
"""
|
289 |
+
pos_emb = self.pe[
|
290 |
+
:,
|
291 |
+
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
|
292 |
+
]
|
293 |
+
return pos_emb
|
cosyvoice/transformer/encoder.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
"""Encoder definition."""
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint as ckpt
|
22 |
+
|
23 |
+
from cosyvoice.transformer.convolution import ConvolutionModule
|
24 |
+
from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
25 |
+
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
26 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
27 |
+
from cosyvoice.utils.class_utils import (
|
28 |
+
COSYVOICE_EMB_CLASSES,
|
29 |
+
COSYVOICE_SUBSAMPLE_CLASSES,
|
30 |
+
COSYVOICE_ATTENTION_CLASSES,
|
31 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
32 |
+
)
|
33 |
+
from cosyvoice.utils.mask import make_pad_mask
|
34 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
35 |
+
|
36 |
+
|
37 |
+
class BaseEncoder(torch.nn.Module):
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
input_size: int,
|
42 |
+
output_size: int = 256,
|
43 |
+
attention_heads: int = 4,
|
44 |
+
linear_units: int = 2048,
|
45 |
+
num_blocks: int = 6,
|
46 |
+
dropout_rate: float = 0.1,
|
47 |
+
positional_dropout_rate: float = 0.1,
|
48 |
+
attention_dropout_rate: float = 0.0,
|
49 |
+
input_layer: str = "conv2d",
|
50 |
+
pos_enc_layer_type: str = "abs_pos",
|
51 |
+
normalize_before: bool = True,
|
52 |
+
static_chunk_size: int = 0,
|
53 |
+
use_dynamic_chunk: bool = False,
|
54 |
+
global_cmvn: torch.nn.Module = None,
|
55 |
+
use_dynamic_left_chunk: bool = False,
|
56 |
+
gradient_checkpointing: bool = False,
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Args:
|
60 |
+
input_size (int): input dim
|
61 |
+
output_size (int): dimension of attention
|
62 |
+
attention_heads (int): the number of heads of multi head attention
|
63 |
+
linear_units (int): the hidden units number of position-wise feed
|
64 |
+
forward
|
65 |
+
num_blocks (int): the number of decoder blocks
|
66 |
+
dropout_rate (float): dropout rate
|
67 |
+
attention_dropout_rate (float): dropout rate in attention
|
68 |
+
positional_dropout_rate (float): dropout rate after adding
|
69 |
+
positional encoding
|
70 |
+
input_layer (str): input layer type.
|
71 |
+
optional [linear, conv2d, conv2d6, conv2d8]
|
72 |
+
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
73 |
+
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
74 |
+
normalize_before (bool):
|
75 |
+
True: use layer_norm before each sub-block of a layer.
|
76 |
+
False: use layer_norm after each sub-block of a layer.
|
77 |
+
static_chunk_size (int): chunk size for static chunk training and
|
78 |
+
decoding
|
79 |
+
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
80 |
+
training or not, You can only use fixed chunk(chunk_size > 0)
|
81 |
+
or dyanmic chunk size(use_dynamic_chunk = True)
|
82 |
+
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
83 |
+
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
84 |
+
dynamic chunk training
|
85 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
86 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
87 |
+
checkpointed segment during backward.
|
88 |
+
"""
|
89 |
+
super().__init__()
|
90 |
+
self._output_size = output_size
|
91 |
+
|
92 |
+
self.global_cmvn = global_cmvn
|
93 |
+
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
94 |
+
input_size,
|
95 |
+
output_size,
|
96 |
+
dropout_rate,
|
97 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
98 |
+
positional_dropout_rate),
|
99 |
+
)
|
100 |
+
|
101 |
+
self.normalize_before = normalize_before
|
102 |
+
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
103 |
+
self.static_chunk_size = static_chunk_size
|
104 |
+
self.use_dynamic_chunk = use_dynamic_chunk
|
105 |
+
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
106 |
+
self.gradient_checkpointing = gradient_checkpointing
|
107 |
+
|
108 |
+
def output_size(self) -> int:
|
109 |
+
return self._output_size
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
xs: torch.Tensor,
|
114 |
+
xs_lens: torch.Tensor,
|
115 |
+
decoding_chunk_size: int = 0,
|
116 |
+
num_decoding_left_chunks: int = -1,
|
117 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
"""Embed positions in tensor.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
xs: padded input tensor (B, T, D)
|
122 |
+
xs_lens: input length (B)
|
123 |
+
decoding_chunk_size: decoding chunk size for dynamic chunk
|
124 |
+
0: default for training, use random dynamic chunk.
|
125 |
+
<0: for decoding, use full chunk.
|
126 |
+
>0: for decoding, use fixed chunk size as set.
|
127 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
128 |
+
the chunk size is decoding_chunk_size.
|
129 |
+
>=0: use num_decoding_left_chunks
|
130 |
+
<0: use all left chunks
|
131 |
+
Returns:
|
132 |
+
encoder output tensor xs, and subsampled masks
|
133 |
+
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
134 |
+
masks: torch.Tensor batch padding mask after subsample
|
135 |
+
(B, 1, T' ~= T/subsample_rate)
|
136 |
+
NOTE(xcsong):
|
137 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
138 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
139 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
140 |
+
"""
|
141 |
+
T = xs.size(1)
|
142 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
143 |
+
if self.global_cmvn is not None:
|
144 |
+
xs = self.global_cmvn(xs)
|
145 |
+
xs, pos_emb, masks = self.embed(xs, masks)
|
146 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
147 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
148 |
+
self.use_dynamic_chunk,
|
149 |
+
self.use_dynamic_left_chunk,
|
150 |
+
decoding_chunk_size,
|
151 |
+
self.static_chunk_size,
|
152 |
+
num_decoding_left_chunks)
|
153 |
+
if self.gradient_checkpointing and self.training:
|
154 |
+
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
155 |
+
mask_pad)
|
156 |
+
else:
|
157 |
+
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
158 |
+
if self.normalize_before:
|
159 |
+
xs = self.after_norm(xs)
|
160 |
+
# Here we assume the mask is not changed in encoder layers, so just
|
161 |
+
# return the masks before encoder layers, and the masks will be used
|
162 |
+
# for cross attention with decoder later
|
163 |
+
return xs, masks
|
164 |
+
|
165 |
+
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
166 |
+
pos_emb: torch.Tensor,
|
167 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
168 |
+
for layer in self.encoders:
|
169 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
170 |
+
return xs
|
171 |
+
|
172 |
+
@torch.jit.ignore(drop=True)
|
173 |
+
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
174 |
+
chunk_masks: torch.Tensor,
|
175 |
+
pos_emb: torch.Tensor,
|
176 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
177 |
+
for layer in self.encoders:
|
178 |
+
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
179 |
+
chunk_masks, pos_emb,
|
180 |
+
mask_pad)
|
181 |
+
return xs
|
182 |
+
|
183 |
+
def forward_chunk(
|
184 |
+
self,
|
185 |
+
xs: torch.Tensor,
|
186 |
+
offset: int,
|
187 |
+
required_cache_size: int,
|
188 |
+
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
189 |
+
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
190 |
+
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
191 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
192 |
+
""" Forward just one chunk
|
193 |
+
|
194 |
+
Args:
|
195 |
+
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
196 |
+
where `time == (chunk_size - 1) * subsample_rate + \
|
197 |
+
subsample.right_context + 1`
|
198 |
+
offset (int): current offset in encoder output time stamp
|
199 |
+
required_cache_size (int): cache size required for next chunk
|
200 |
+
compuation
|
201 |
+
>=0: actual cache size
|
202 |
+
<0: means all history cache is required
|
203 |
+
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
204 |
+
transformer/conformer attention, with shape
|
205 |
+
(elayers, head, cache_t1, d_k * 2), where
|
206 |
+
`head * d_k == hidden-dim` and
|
207 |
+
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
208 |
+
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
209 |
+
(elayers, b=1, hidden-dim, cache_t2), where
|
210 |
+
`cache_t2 == cnn.lorder - 1`
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
torch.Tensor: output of current input xs,
|
214 |
+
with shape (b=1, chunk_size, hidden-dim).
|
215 |
+
torch.Tensor: new attention cache required for next chunk, with
|
216 |
+
dynamic shape (elayers, head, ?, d_k * 2)
|
217 |
+
depending on required_cache_size.
|
218 |
+
torch.Tensor: new conformer cnn cache required for next chunk, with
|
219 |
+
same shape as the original cnn_cache.
|
220 |
+
|
221 |
+
"""
|
222 |
+
assert xs.size(0) == 1
|
223 |
+
# tmp_masks is just for interface compatibility
|
224 |
+
tmp_masks = torch.ones(1,
|
225 |
+
xs.size(1),
|
226 |
+
device=xs.device,
|
227 |
+
dtype=torch.bool)
|
228 |
+
tmp_masks = tmp_masks.unsqueeze(1)
|
229 |
+
if self.global_cmvn is not None:
|
230 |
+
xs = self.global_cmvn(xs)
|
231 |
+
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
232 |
+
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
233 |
+
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
234 |
+
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
235 |
+
chunk_size = xs.size(1)
|
236 |
+
attention_key_size = cache_t1 + chunk_size
|
237 |
+
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
238 |
+
size=attention_key_size)
|
239 |
+
if required_cache_size < 0:
|
240 |
+
next_cache_start = 0
|
241 |
+
elif required_cache_size == 0:
|
242 |
+
next_cache_start = attention_key_size
|
243 |
+
else:
|
244 |
+
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
245 |
+
r_att_cache = []
|
246 |
+
r_cnn_cache = []
|
247 |
+
for i, layer in enumerate(self.encoders):
|
248 |
+
# NOTE(xcsong): Before layer.forward
|
249 |
+
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
250 |
+
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
251 |
+
xs, _, new_att_cache, new_cnn_cache = layer(
|
252 |
+
xs,
|
253 |
+
att_mask,
|
254 |
+
pos_emb,
|
255 |
+
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
256 |
+
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
257 |
+
# NOTE(xcsong): After layer.forward
|
258 |
+
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
259 |
+
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
260 |
+
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
261 |
+
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
262 |
+
if self.normalize_before:
|
263 |
+
xs = self.after_norm(xs)
|
264 |
+
|
265 |
+
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
266 |
+
# ? may be larger than cache_t1, it depends on required_cache_size
|
267 |
+
r_att_cache = torch.cat(r_att_cache, dim=0)
|
268 |
+
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
269 |
+
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
270 |
+
|
271 |
+
return (xs, r_att_cache, r_cnn_cache)
|
272 |
+
|
273 |
+
def forward_chunk_by_chunk(
|
274 |
+
self,
|
275 |
+
xs: torch.Tensor,
|
276 |
+
decoding_chunk_size: int,
|
277 |
+
num_decoding_left_chunks: int = -1,
|
278 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
279 |
+
""" Forward input chunk by chunk with chunk_size like a streaming
|
280 |
+
fashion
|
281 |
+
|
282 |
+
Here we should pay special attention to computation cache in the
|
283 |
+
streaming style forward chunk by chunk. Three things should be taken
|
284 |
+
into account for computation in the current network:
|
285 |
+
1. transformer/conformer encoder layers output cache
|
286 |
+
2. convolution in conformer
|
287 |
+
3. convolution in subsampling
|
288 |
+
|
289 |
+
However, we don't implement subsampling cache for:
|
290 |
+
1. We can control subsampling module to output the right result by
|
291 |
+
overlapping input instead of cache left context, even though it
|
292 |
+
wastes some computation, but subsampling only takes a very
|
293 |
+
small fraction of computation in the whole model.
|
294 |
+
2. Typically, there are several covolution layers with subsampling
|
295 |
+
in subsampling module, it is tricky and complicated to do cache
|
296 |
+
with different convolution layers with different subsampling
|
297 |
+
rate.
|
298 |
+
3. Currently, nn.Sequential is used to stack all the convolution
|
299 |
+
layers in subsampling, we need to rewrite it to make it work
|
300 |
+
with cache, which is not prefered.
|
301 |
+
Args:
|
302 |
+
xs (torch.Tensor): (1, max_len, dim)
|
303 |
+
chunk_size (int): decoding chunk size
|
304 |
+
"""
|
305 |
+
assert decoding_chunk_size > 0
|
306 |
+
# The model is trained by static or dynamic chunk
|
307 |
+
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
308 |
+
subsampling = self.embed.subsampling_rate
|
309 |
+
context = self.embed.right_context + 1 # Add current frame
|
310 |
+
stride = subsampling * decoding_chunk_size
|
311 |
+
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
312 |
+
num_frames = xs.size(1)
|
313 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
314 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
315 |
+
outputs = []
|
316 |
+
offset = 0
|
317 |
+
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
318 |
+
|
319 |
+
# Feed forward overlap input step by step
|
320 |
+
for cur in range(0, num_frames - context + 1, stride):
|
321 |
+
end = min(cur + decoding_window, num_frames)
|
322 |
+
chunk_xs = xs[:, cur:end, :]
|
323 |
+
(y, att_cache,
|
324 |
+
cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
325 |
+
required_cache_size, att_cache,
|
326 |
+
cnn_cache)
|
327 |
+
outputs.append(y)
|
328 |
+
offset += y.size(1)
|
329 |
+
ys = torch.cat(outputs, 1)
|
330 |
+
masks = torch.ones((1, 1, ys.size(1)),
|
331 |
+
device=ys.device,
|
332 |
+
dtype=torch.bool)
|
333 |
+
return ys, masks
|
334 |
+
|
335 |
+
|
336 |
+
class TransformerEncoder(BaseEncoder):
|
337 |
+
"""Transformer encoder module."""
|
338 |
+
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
input_size: int,
|
342 |
+
output_size: int = 256,
|
343 |
+
attention_heads: int = 4,
|
344 |
+
linear_units: int = 2048,
|
345 |
+
num_blocks: int = 6,
|
346 |
+
dropout_rate: float = 0.1,
|
347 |
+
positional_dropout_rate: float = 0.1,
|
348 |
+
attention_dropout_rate: float = 0.0,
|
349 |
+
input_layer: str = "conv2d",
|
350 |
+
pos_enc_layer_type: str = "abs_pos",
|
351 |
+
normalize_before: bool = True,
|
352 |
+
static_chunk_size: int = 0,
|
353 |
+
use_dynamic_chunk: bool = False,
|
354 |
+
global_cmvn: torch.nn.Module = None,
|
355 |
+
use_dynamic_left_chunk: bool = False,
|
356 |
+
key_bias: bool = True,
|
357 |
+
selfattention_layer_type: str = "selfattn",
|
358 |
+
activation_type: str = "relu",
|
359 |
+
gradient_checkpointing: bool = False,
|
360 |
+
):
|
361 |
+
""" Construct TransformerEncoder
|
362 |
+
|
363 |
+
See Encoder for the meaning of each parameter.
|
364 |
+
"""
|
365 |
+
super().__init__(input_size, output_size, attention_heads,
|
366 |
+
linear_units, num_blocks, dropout_rate,
|
367 |
+
positional_dropout_rate, attention_dropout_rate,
|
368 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
369 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
370 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
371 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
372 |
+
self.encoders = torch.nn.ModuleList([
|
373 |
+
TransformerEncoderLayer(
|
374 |
+
output_size,
|
375 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
376 |
+
output_size,
|
377 |
+
attention_dropout_rate,
|
378 |
+
key_bias),
|
379 |
+
PositionwiseFeedForward(output_size, linear_units,
|
380 |
+
dropout_rate, activation),
|
381 |
+
dropout_rate, normalize_before) for _ in range(num_blocks)
|
382 |
+
])
|
383 |
+
|
384 |
+
|
385 |
+
class ConformerEncoder(BaseEncoder):
|
386 |
+
"""Conformer encoder module."""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
input_size: int,
|
391 |
+
output_size: int = 256,
|
392 |
+
attention_heads: int = 4,
|
393 |
+
linear_units: int = 2048,
|
394 |
+
num_blocks: int = 6,
|
395 |
+
dropout_rate: float = 0.1,
|
396 |
+
positional_dropout_rate: float = 0.1,
|
397 |
+
attention_dropout_rate: float = 0.0,
|
398 |
+
input_layer: str = "conv2d",
|
399 |
+
pos_enc_layer_type: str = "rel_pos",
|
400 |
+
normalize_before: bool = True,
|
401 |
+
static_chunk_size: int = 0,
|
402 |
+
use_dynamic_chunk: bool = False,
|
403 |
+
global_cmvn: torch.nn.Module = None,
|
404 |
+
use_dynamic_left_chunk: bool = False,
|
405 |
+
positionwise_conv_kernel_size: int = 1,
|
406 |
+
macaron_style: bool = True,
|
407 |
+
selfattention_layer_type: str = "rel_selfattn",
|
408 |
+
activation_type: str = "swish",
|
409 |
+
use_cnn_module: bool = True,
|
410 |
+
cnn_module_kernel: int = 15,
|
411 |
+
causal: bool = False,
|
412 |
+
cnn_module_norm: str = "batch_norm",
|
413 |
+
key_bias: bool = True,
|
414 |
+
gradient_checkpointing: bool = False,
|
415 |
+
):
|
416 |
+
"""Construct ConformerEncoder
|
417 |
+
|
418 |
+
Args:
|
419 |
+
input_size to use_dynamic_chunk, see in BaseEncoder
|
420 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
421 |
+
conv1d layer.
|
422 |
+
macaron_style (bool): Whether to use macaron style for
|
423 |
+
positionwise layer.
|
424 |
+
selfattention_layer_type (str): Encoder attention layer type,
|
425 |
+
the parameter has no effect now, it's just for configure
|
426 |
+
compatibility.
|
427 |
+
activation_type (str): Encoder activation function type.
|
428 |
+
use_cnn_module (bool): Whether to use convolution module.
|
429 |
+
cnn_module_kernel (int): Kernel size of convolution module.
|
430 |
+
causal (bool): whether to use causal convolution or not.
|
431 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
432 |
+
"""
|
433 |
+
super().__init__(input_size, output_size, attention_heads,
|
434 |
+
linear_units, num_blocks, dropout_rate,
|
435 |
+
positional_dropout_rate, attention_dropout_rate,
|
436 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
437 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
438 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
439 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
440 |
+
|
441 |
+
# self-attention module definition
|
442 |
+
encoder_selfattn_layer_args = (
|
443 |
+
attention_heads,
|
444 |
+
output_size,
|
445 |
+
attention_dropout_rate,
|
446 |
+
key_bias,
|
447 |
+
)
|
448 |
+
# feed-forward module definition
|
449 |
+
positionwise_layer_args = (
|
450 |
+
output_size,
|
451 |
+
linear_units,
|
452 |
+
dropout_rate,
|
453 |
+
activation,
|
454 |
+
)
|
455 |
+
# convolution module definition
|
456 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
457 |
+
cnn_module_norm, causal)
|
458 |
+
|
459 |
+
self.encoders = torch.nn.ModuleList([
|
460 |
+
ConformerEncoderLayer(
|
461 |
+
output_size,
|
462 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
463 |
+
*encoder_selfattn_layer_args),
|
464 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
465 |
+
PositionwiseFeedForward(
|
466 |
+
*positionwise_layer_args) if macaron_style else None,
|
467 |
+
ConvolutionModule(
|
468 |
+
*convolution_layer_args) if use_cnn_module else None,
|
469 |
+
dropout_rate,
|
470 |
+
normalize_before,
|
471 |
+
) for _ in range(num_blocks)
|
472 |
+
])
|
cosyvoice/transformer/encoder_layer.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Encoder self-attention layer definition."""
|
17 |
+
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerEncoderLayer(nn.Module):
|
25 |
+
"""Encoder layer module.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
size (int): Input dimension.
|
29 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
30 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
31 |
+
instance can be used as the argument.
|
32 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
33 |
+
`PositionwiseFeedForward`, instance can be used as the argument.
|
34 |
+
dropout_rate (float): Dropout rate.
|
35 |
+
normalize_before (bool):
|
36 |
+
True: use layer_norm before each sub-block.
|
37 |
+
False: to use layer_norm after each sub-block.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
size: int,
|
43 |
+
self_attn: torch.nn.Module,
|
44 |
+
feed_forward: torch.nn.Module,
|
45 |
+
dropout_rate: float,
|
46 |
+
normalize_before: bool = True,
|
47 |
+
):
|
48 |
+
"""Construct an EncoderLayer object."""
|
49 |
+
super().__init__()
|
50 |
+
self.self_attn = self_attn
|
51 |
+
self.feed_forward = feed_forward
|
52 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
53 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
54 |
+
self.dropout = nn.Dropout(dropout_rate)
|
55 |
+
self.size = size
|
56 |
+
self.normalize_before = normalize_before
|
57 |
+
|
58 |
+
def forward(
|
59 |
+
self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
mask: torch.Tensor,
|
62 |
+
pos_emb: torch.Tensor,
|
63 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
64 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
65 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
66 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
67 |
+
"""Compute encoded features.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
x (torch.Tensor): (#batch, time, size)
|
71 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
72 |
+
(0, 0, 0) means fake mask.
|
73 |
+
pos_emb (torch.Tensor): just for interface compatibility
|
74 |
+
to ConformerEncoderLayer
|
75 |
+
mask_pad (torch.Tensor): does not used in transformer layer,
|
76 |
+
just for unified api with conformer.
|
77 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
78 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
79 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
80 |
+
(#batch=1, size, cache_t2), not used here, it's for interface
|
81 |
+
compatibility to ConformerEncoderLayer.
|
82 |
+
Returns:
|
83 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
84 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
85 |
+
torch.Tensor: att_cache tensor,
|
86 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
87 |
+
torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = x
|
91 |
+
if self.normalize_before:
|
92 |
+
x = self.norm1(x)
|
93 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
|
94 |
+
x = residual + self.dropout(x_att)
|
95 |
+
if not self.normalize_before:
|
96 |
+
x = self.norm1(x)
|
97 |
+
|
98 |
+
residual = x
|
99 |
+
if self.normalize_before:
|
100 |
+
x = self.norm2(x)
|
101 |
+
x = residual + self.dropout(self.feed_forward(x))
|
102 |
+
if not self.normalize_before:
|
103 |
+
x = self.norm2(x)
|
104 |
+
|
105 |
+
fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
106 |
+
return x, mask, new_att_cache, fake_cnn_cache
|
107 |
+
|
108 |
+
|
109 |
+
class ConformerEncoderLayer(nn.Module):
|
110 |
+
"""Encoder layer module.
|
111 |
+
Args:
|
112 |
+
size (int): Input dimension.
|
113 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
114 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
115 |
+
instance can be used as the argument.
|
116 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
117 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
118 |
+
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
119 |
+
instance.
|
120 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
121 |
+
conv_module (torch.nn.Module): Convolution module instance.
|
122 |
+
`ConvlutionModule` instance can be used as the argument.
|
123 |
+
dropout_rate (float): Dropout rate.
|
124 |
+
normalize_before (bool):
|
125 |
+
True: use layer_norm before each sub-block.
|
126 |
+
False: use layer_norm after each sub-block.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
size: int,
|
132 |
+
self_attn: torch.nn.Module,
|
133 |
+
feed_forward: Optional[nn.Module] = None,
|
134 |
+
feed_forward_macaron: Optional[nn.Module] = None,
|
135 |
+
conv_module: Optional[nn.Module] = None,
|
136 |
+
dropout_rate: float = 0.1,
|
137 |
+
normalize_before: bool = True,
|
138 |
+
):
|
139 |
+
"""Construct an EncoderLayer object."""
|
140 |
+
super().__init__()
|
141 |
+
self.self_attn = self_attn
|
142 |
+
self.feed_forward = feed_forward
|
143 |
+
self.feed_forward_macaron = feed_forward_macaron
|
144 |
+
self.conv_module = conv_module
|
145 |
+
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
146 |
+
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
147 |
+
if feed_forward_macaron is not None:
|
148 |
+
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
149 |
+
self.ff_scale = 0.5
|
150 |
+
else:
|
151 |
+
self.ff_scale = 1.0
|
152 |
+
if self.conv_module is not None:
|
153 |
+
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
|
154 |
+
self.norm_final = nn.LayerNorm(
|
155 |
+
size, eps=1e-5) # for the final output of the block
|
156 |
+
self.dropout = nn.Dropout(dropout_rate)
|
157 |
+
self.size = size
|
158 |
+
self.normalize_before = normalize_before
|
159 |
+
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
x: torch.Tensor,
|
163 |
+
mask: torch.Tensor,
|
164 |
+
pos_emb: torch.Tensor,
|
165 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
166 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
167 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
168 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
169 |
+
"""Compute encoded features.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
x (torch.Tensor): (#batch, time, size)
|
173 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
174 |
+
(0, 0, 0) means fake mask.
|
175 |
+
pos_emb (torch.Tensor): positional encoding, must not be None
|
176 |
+
for ConformerEncoderLayer.
|
177 |
+
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
178 |
+
(#batch, 1,time), (0, 0, 0) means fake mask.
|
179 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
180 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
181 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
182 |
+
(#batch=1, size, cache_t2)
|
183 |
+
Returns:
|
184 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
185 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
186 |
+
torch.Tensor: att_cache tensor,
|
187 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
188 |
+
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
189 |
+
"""
|
190 |
+
|
191 |
+
# whether to use macaron style
|
192 |
+
if self.feed_forward_macaron is not None:
|
193 |
+
residual = x
|
194 |
+
if self.normalize_before:
|
195 |
+
x = self.norm_ff_macaron(x)
|
196 |
+
x = residual + self.ff_scale * self.dropout(
|
197 |
+
self.feed_forward_macaron(x))
|
198 |
+
if not self.normalize_before:
|
199 |
+
x = self.norm_ff_macaron(x)
|
200 |
+
|
201 |
+
# multi-headed self-attention module
|
202 |
+
residual = x
|
203 |
+
if self.normalize_before:
|
204 |
+
x = self.norm_mha(x)
|
205 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
|
206 |
+
att_cache)
|
207 |
+
x = residual + self.dropout(x_att)
|
208 |
+
if not self.normalize_before:
|
209 |
+
x = self.norm_mha(x)
|
210 |
+
|
211 |
+
# convolution module
|
212 |
+
# Fake new cnn cache here, and then change it in conv_module
|
213 |
+
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
214 |
+
if self.conv_module is not None:
|
215 |
+
residual = x
|
216 |
+
if self.normalize_before:
|
217 |
+
x = self.norm_conv(x)
|
218 |
+
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
219 |
+
x = residual + self.dropout(x)
|
220 |
+
|
221 |
+
if not self.normalize_before:
|
222 |
+
x = self.norm_conv(x)
|
223 |
+
|
224 |
+
# feed forward module
|
225 |
+
residual = x
|
226 |
+
if self.normalize_before:
|
227 |
+
x = self.norm_ff(x)
|
228 |
+
|
229 |
+
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
230 |
+
if not self.normalize_before:
|
231 |
+
x = self.norm_ff(x)
|
232 |
+
|
233 |
+
if self.conv_module is not None:
|
234 |
+
x = self.norm_final(x)
|
235 |
+
|
236 |
+
return x, mask, new_att_cache, new_cnn_cache
|
cosyvoice/transformer/label_smoothing_loss.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Label smoothing module."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
|
21 |
+
class LabelSmoothingLoss(nn.Module):
|
22 |
+
"""Label-smoothing loss.
|
23 |
+
|
24 |
+
In a standard CE loss, the label's data distribution is:
|
25 |
+
[0,1,2] ->
|
26 |
+
[
|
27 |
+
[1.0, 0.0, 0.0],
|
28 |
+
[0.0, 1.0, 0.0],
|
29 |
+
[0.0, 0.0, 1.0],
|
30 |
+
]
|
31 |
+
|
32 |
+
In the smoothing version CE Loss,some probabilities
|
33 |
+
are taken from the true label prob (1.0) and are divided
|
34 |
+
among other labels.
|
35 |
+
|
36 |
+
e.g.
|
37 |
+
smoothing=0.1
|
38 |
+
[0,1,2] ->
|
39 |
+
[
|
40 |
+
[0.9, 0.05, 0.05],
|
41 |
+
[0.05, 0.9, 0.05],
|
42 |
+
[0.05, 0.05, 0.9],
|
43 |
+
]
|
44 |
+
|
45 |
+
Args:
|
46 |
+
size (int): the number of class
|
47 |
+
padding_idx (int): padding class id which will be ignored for loss
|
48 |
+
smoothing (float): smoothing rate (0.0 means the conventional CE)
|
49 |
+
normalize_length (bool):
|
50 |
+
normalize loss by sequence length if True
|
51 |
+
normalize loss by batch size if False
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self,
|
55 |
+
size: int,
|
56 |
+
padding_idx: int,
|
57 |
+
smoothing: float,
|
58 |
+
normalize_length: bool = False):
|
59 |
+
"""Construct an LabelSmoothingLoss object."""
|
60 |
+
super(LabelSmoothingLoss, self).__init__()
|
61 |
+
self.criterion = nn.KLDivLoss(reduction="none")
|
62 |
+
self.padding_idx = padding_idx
|
63 |
+
self.confidence = 1.0 - smoothing
|
64 |
+
self.smoothing = smoothing
|
65 |
+
self.size = size
|
66 |
+
self.normalize_length = normalize_length
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
69 |
+
"""Compute loss between x and target.
|
70 |
+
|
71 |
+
The model outputs and data labels tensors are flatten to
|
72 |
+
(batch*seqlen, class) shape and a mask is applied to the
|
73 |
+
padding part which should not be calculated for loss.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
x (torch.Tensor): prediction (batch, seqlen, class)
|
77 |
+
target (torch.Tensor):
|
78 |
+
target signal masked with self.padding_id (batch, seqlen)
|
79 |
+
Returns:
|
80 |
+
loss (torch.Tensor) : The KL loss, scalar float value
|
81 |
+
"""
|
82 |
+
assert x.size(2) == self.size
|
83 |
+
batch_size = x.size(0)
|
84 |
+
x = x.view(-1, self.size)
|
85 |
+
target = target.view(-1)
|
86 |
+
# use zeros_like instead of torch.no_grad() for true_dist,
|
87 |
+
# since no_grad() can not be exported by JIT
|
88 |
+
true_dist = torch.zeros_like(x)
|
89 |
+
true_dist.fill_(self.smoothing / (self.size - 1))
|
90 |
+
ignore = target == self.padding_idx # (B,)
|
91 |
+
total = len(target) - ignore.sum().item()
|
92 |
+
target = target.masked_fill(ignore, 0) # avoid -1 index
|
93 |
+
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
94 |
+
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
95 |
+
denom = total if self.normalize_length else batch_size
|
96 |
+
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
cosyvoice/transformer/positionwise_feed_forward.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Positionwise feed forward layer definition."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
class PositionwiseFeedForward(torch.nn.Module):
|
21 |
+
"""Positionwise feed forward layer.
|
22 |
+
|
23 |
+
FeedForward are appied on each position of the sequence.
|
24 |
+
The output dim is same with the input dim.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
idim (int): Input dimenstion.
|
28 |
+
hidden_units (int): The number of hidden units.
|
29 |
+
dropout_rate (float): Dropout rate.
|
30 |
+
activation (torch.nn.Module): Activation function
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
idim: int,
|
36 |
+
hidden_units: int,
|
37 |
+
dropout_rate: float,
|
38 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
39 |
+
):
|
40 |
+
"""Construct a PositionwiseFeedForward object."""
|
41 |
+
super(PositionwiseFeedForward, self).__init__()
|
42 |
+
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
43 |
+
self.activation = activation
|
44 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
45 |
+
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
46 |
+
|
47 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
48 |
+
"""Forward function.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
xs: input tensor (B, L, D)
|
52 |
+
Returns:
|
53 |
+
output tensor, (B, L, D)
|
54 |
+
"""
|
55 |
+
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
56 |
+
|
57 |
+
|
58 |
+
class MoEFFNLayer(torch.nn.Module):
|
59 |
+
"""
|
60 |
+
Mixture of expert with Positionwise feed forward layer
|
61 |
+
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
|
62 |
+
The output dim is same with the input dim.
|
63 |
+
|
64 |
+
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
|
65 |
+
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
66 |
+
Args:
|
67 |
+
n_expert: number of expert.
|
68 |
+
n_expert_per_token: The actual number of experts used for each frame
|
69 |
+
idim (int): Input dimenstion.
|
70 |
+
hidden_units (int): The number of hidden units.
|
71 |
+
dropout_rate (float): Dropout rate.
|
72 |
+
activation (torch.nn.Module): Activation function
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
n_expert: int,
|
78 |
+
n_expert_per_token: int,
|
79 |
+
idim: int,
|
80 |
+
hidden_units: int,
|
81 |
+
dropout_rate: float,
|
82 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
83 |
+
):
|
84 |
+
super(MoEFFNLayer, self).__init__()
|
85 |
+
self.gate = torch.nn.Linear(idim, n_expert, bias=False)
|
86 |
+
self.experts = torch.nn.ModuleList(
|
87 |
+
PositionwiseFeedForward(idim, hidden_units, dropout_rate,
|
88 |
+
activation) for _ in range(n_expert))
|
89 |
+
self.n_expert_per_token = n_expert_per_token
|
90 |
+
|
91 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
92 |
+
"""Foward function.
|
93 |
+
Args:
|
94 |
+
xs: input tensor (B, L, D)
|
95 |
+
Returns:
|
96 |
+
output tensor, (B, L, D)
|
97 |
+
|
98 |
+
"""
|
99 |
+
B, L, D = xs.size(
|
100 |
+
) # batch size, sequence length, embedding dimension (idim)
|
101 |
+
xs = xs.view(-1, D) # (B*L, D)
|
102 |
+
router = self.gate(xs) # (B*L, n_expert)
|
103 |
+
logits, indices = torch.topk(
|
104 |
+
router, self.n_expert_per_token
|
105 |
+
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
|
106 |
+
weights = torch.nn.functional.softmax(
|
107 |
+
logits, dim=1,
|
108 |
+
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
|
109 |
+
output = torch.zeros_like(xs) # (B*L, D)
|
110 |
+
for i, expert in enumerate(self.experts):
|
111 |
+
mask = indices == i
|
112 |
+
batch_idx, ith_expert = torch.where(mask)
|
113 |
+
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
|
114 |
+
xs[batch_idx])
|
115 |
+
return output.view(B, L, D)
|
cosyvoice/transformer/subsampling.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Subsampling layer definition."""
|
17 |
+
|
18 |
+
from typing import Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
class BaseSubsampling(torch.nn.Module):
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
super().__init__()
|
27 |
+
self.right_context = 0
|
28 |
+
self.subsampling_rate = 1
|
29 |
+
|
30 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
31 |
+
size: int) -> torch.Tensor:
|
32 |
+
return self.pos_enc.position_encoding(offset, size)
|
33 |
+
|
34 |
+
|
35 |
+
class EmbedinigNoSubsampling(BaseSubsampling):
|
36 |
+
"""Embedding input without subsampling
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
40 |
+
pos_enc_class: torch.nn.Module):
|
41 |
+
super().__init__()
|
42 |
+
self.embed = torch.nn.Embedding(idim, odim)
|
43 |
+
self.pos_enc = pos_enc_class
|
44 |
+
|
45 |
+
def forward(
|
46 |
+
self,
|
47 |
+
x: torch.Tensor,
|
48 |
+
x_mask: torch.Tensor,
|
49 |
+
offset: Union[int, torch.Tensor] = 0
|
50 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
51 |
+
"""Input x.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
55 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
59 |
+
where time' = time .
|
60 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
61 |
+
where time' = time .
|
62 |
+
|
63 |
+
"""
|
64 |
+
x = self.embed(x)
|
65 |
+
x, pos_emb = self.pos_enc(x, offset)
|
66 |
+
return x, pos_emb, x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class LinearNoSubsampling(BaseSubsampling):
|
70 |
+
"""Linear transform the input without subsampling
|
71 |
+
|
72 |
+
Args:
|
73 |
+
idim (int): Input dimension.
|
74 |
+
odim (int): Output dimension.
|
75 |
+
dropout_rate (float): Dropout rate.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
80 |
+
pos_enc_class: torch.nn.Module):
|
81 |
+
"""Construct an linear object."""
|
82 |
+
super().__init__()
|
83 |
+
self.out = torch.nn.Sequential(
|
84 |
+
torch.nn.Linear(idim, odim),
|
85 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
86 |
+
torch.nn.Dropout(dropout_rate),
|
87 |
+
)
|
88 |
+
self.pos_enc = pos_enc_class
|
89 |
+
self.right_context = 0
|
90 |
+
self.subsampling_rate = 1
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
x: torch.Tensor,
|
95 |
+
x_mask: torch.Tensor,
|
96 |
+
offset: Union[int, torch.Tensor] = 0
|
97 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
98 |
+
"""Input x.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
102 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
106 |
+
where time' = time .
|
107 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
108 |
+
where time' = time .
|
109 |
+
|
110 |
+
"""
|
111 |
+
x = self.out(x)
|
112 |
+
x, pos_emb = self.pos_enc(x, offset)
|
113 |
+
return x, pos_emb, x_mask
|
114 |
+
|
115 |
+
|
116 |
+
class Conv1dSubsampling2(BaseSubsampling):
|
117 |
+
"""Convolutional 1D subsampling (to 1/2 length).
|
118 |
+
It is designed for Whisper, ref:
|
119 |
+
https://github.com/openai/whisper/blob/main/whisper/model.py
|
120 |
+
|
121 |
+
Args:
|
122 |
+
idim (int): Input dimension.
|
123 |
+
odim (int): Output dimension.
|
124 |
+
dropout_rate (float): Dropout rate.
|
125 |
+
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
129 |
+
pos_enc_class: torch.nn.Module):
|
130 |
+
"""Construct an Conv1dSubsampling2 object."""
|
131 |
+
super().__init__()
|
132 |
+
self.conv = torch.nn.Sequential(
|
133 |
+
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
|
134 |
+
torch.nn.GELU(),
|
135 |
+
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
|
136 |
+
torch.nn.GELU(),
|
137 |
+
)
|
138 |
+
self.pos_enc = pos_enc_class
|
139 |
+
# The right context for every conv layer is computed by:
|
140 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
141 |
+
self.subsampling_rate = 2
|
142 |
+
# 4 = (3 - 1) * 1 + (3 - 1) * 1
|
143 |
+
self.right_context = 4
|
144 |
+
|
145 |
+
def forward(
|
146 |
+
self,
|
147 |
+
x: torch.Tensor,
|
148 |
+
x_mask: torch.Tensor,
|
149 |
+
offset: Union[int, torch.Tensor] = 0
|
150 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
151 |
+
"""Subsample x.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
155 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
159 |
+
where time' = time // 2.
|
160 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
161 |
+
where time' = time // 2.
|
162 |
+
torch.Tensor: positional encoding
|
163 |
+
|
164 |
+
"""
|
165 |
+
time = x.size(1)
|
166 |
+
x = x.transpose(1, 2) # (b, f, t)
|
167 |
+
x = self.conv(x)
|
168 |
+
x = x.transpose(1, 2) # (b, t, f)
|
169 |
+
x, pos_emb = self.pos_enc(x, offset)
|
170 |
+
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
171 |
+
|
172 |
+
|
173 |
+
class Conv2dSubsampling4(BaseSubsampling):
|
174 |
+
"""Convolutional 2D subsampling (to 1/4 length).
|
175 |
+
|
176 |
+
Args:
|
177 |
+
idim (int): Input dimension.
|
178 |
+
odim (int): Output dimension.
|
179 |
+
dropout_rate (float): Dropout rate.
|
180 |
+
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
184 |
+
pos_enc_class: torch.nn.Module):
|
185 |
+
"""Construct an Conv2dSubsampling4 object."""
|
186 |
+
super().__init__()
|
187 |
+
self.conv = torch.nn.Sequential(
|
188 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
189 |
+
torch.nn.ReLU(),
|
190 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
191 |
+
torch.nn.ReLU(),
|
192 |
+
)
|
193 |
+
self.out = torch.nn.Sequential(
|
194 |
+
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
195 |
+
self.pos_enc = pos_enc_class
|
196 |
+
# The right context for every conv layer is computed by:
|
197 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
198 |
+
self.subsampling_rate = 4
|
199 |
+
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
200 |
+
self.right_context = 6
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
x: torch.Tensor,
|
205 |
+
x_mask: torch.Tensor,
|
206 |
+
offset: Union[int, torch.Tensor] = 0
|
207 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
208 |
+
"""Subsample x.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
212 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
216 |
+
where time' = time // 4.
|
217 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
218 |
+
where time' = time // 4.
|
219 |
+
torch.Tensor: positional encoding
|
220 |
+
|
221 |
+
"""
|
222 |
+
x = x.unsqueeze(1) # (b, c=1, t, f)
|
223 |
+
x = self.conv(x)
|
224 |
+
b, c, t, f = x.size()
|
225 |
+
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
226 |
+
x, pos_emb = self.pos_enc(x, offset)
|
227 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
228 |
+
|
229 |
+
|
230 |
+
class Conv2dSubsampling6(BaseSubsampling):
|
231 |
+
"""Convolutional 2D subsampling (to 1/6 length).
|
232 |
+
Args:
|
233 |
+
idim (int): Input dimension.
|
234 |
+
odim (int): Output dimension.
|
235 |
+
dropout_rate (float): Dropout rate.
|
236 |
+
pos_enc (torch.nn.Module): Custom position encoding layer.
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
240 |
+
pos_enc_class: torch.nn.Module):
|
241 |
+
"""Construct an Conv2dSubsampling6 object."""
|
242 |
+
super().__init__()
|
243 |
+
self.conv = torch.nn.Sequential(
|
244 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
245 |
+
torch.nn.ReLU(),
|
246 |
+
torch.nn.Conv2d(odim, odim, 5, 3),
|
247 |
+
torch.nn.ReLU(),
|
248 |
+
)
|
249 |
+
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
250 |
+
odim)
|
251 |
+
self.pos_enc = pos_enc_class
|
252 |
+
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
253 |
+
self.subsampling_rate = 6
|
254 |
+
self.right_context = 10
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
x: torch.Tensor,
|
259 |
+
x_mask: torch.Tensor,
|
260 |
+
offset: Union[int, torch.Tensor] = 0
|
261 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
262 |
+
"""Subsample x.
|
263 |
+
Args:
|
264 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
265 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
269 |
+
where time' = time // 6.
|
270 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
271 |
+
where time' = time // 6.
|
272 |
+
torch.Tensor: positional encoding
|
273 |
+
"""
|
274 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
275 |
+
x = self.conv(x)
|
276 |
+
b, c, t, f = x.size()
|
277 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
278 |
+
x, pos_emb = self.pos_enc(x, offset)
|
279 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
280 |
+
|
281 |
+
|
282 |
+
class Conv2dSubsampling8(BaseSubsampling):
|
283 |
+
"""Convolutional 2D subsampling (to 1/8 length).
|
284 |
+
|
285 |
+
Args:
|
286 |
+
idim (int): Input dimension.
|
287 |
+
odim (int): Output dimension.
|
288 |
+
dropout_rate (float): Dropout rate.
|
289 |
+
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
293 |
+
pos_enc_class: torch.nn.Module):
|
294 |
+
"""Construct an Conv2dSubsampling8 object."""
|
295 |
+
super().__init__()
|
296 |
+
self.conv = torch.nn.Sequential(
|
297 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
298 |
+
torch.nn.ReLU(),
|
299 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
300 |
+
torch.nn.ReLU(),
|
301 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
302 |
+
torch.nn.ReLU(),
|
303 |
+
)
|
304 |
+
self.linear = torch.nn.Linear(
|
305 |
+
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
306 |
+
self.pos_enc = pos_enc_class
|
307 |
+
self.subsampling_rate = 8
|
308 |
+
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
309 |
+
self.right_context = 14
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
x: torch.Tensor,
|
314 |
+
x_mask: torch.Tensor,
|
315 |
+
offset: Union[int, torch.Tensor] = 0
|
316 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
317 |
+
"""Subsample x.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
321 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
325 |
+
where time' = time // 8.
|
326 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
327 |
+
where time' = time // 8.
|
328 |
+
torch.Tensor: positional encoding
|
329 |
+
"""
|
330 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
331 |
+
x = self.conv(x)
|
332 |
+
b, c, t, f = x.size()
|
333 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
334 |
+
x, pos_emb = self.pos_enc(x, offset)
|
335 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
336 |
+
|
337 |
+
|
338 |
+
class LegacyLinearNoSubsampling(BaseSubsampling):
|
339 |
+
"""Linear transform the input without subsampling
|
340 |
+
|
341 |
+
Args:
|
342 |
+
idim (int): Input dimension.
|
343 |
+
odim (int): Output dimension.
|
344 |
+
dropout_rate (float): Dropout rate.
|
345 |
+
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
349 |
+
pos_enc_class: torch.nn.Module):
|
350 |
+
"""Construct an linear object."""
|
351 |
+
super().__init__()
|
352 |
+
self.out = torch.nn.Sequential(
|
353 |
+
torch.nn.Linear(idim, odim),
|
354 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
355 |
+
torch.nn.Dropout(dropout_rate),
|
356 |
+
torch.nn.ReLU(),
|
357 |
+
)
|
358 |
+
self.pos_enc = pos_enc_class
|
359 |
+
self.right_context = 0
|
360 |
+
self.subsampling_rate = 1
|
361 |
+
|
362 |
+
def forward(
|
363 |
+
self,
|
364 |
+
x: torch.Tensor,
|
365 |
+
x_mask: torch.Tensor,
|
366 |
+
offset: Union[int, torch.Tensor] = 0
|
367 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
368 |
+
"""Input x.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
372 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
376 |
+
where time' = time .
|
377 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
378 |
+
where time' = time .
|
379 |
+
|
380 |
+
"""
|
381 |
+
x = self.out(x)
|
382 |
+
x, pos_emb = self.pos_enc(x, offset)
|
383 |
+
return x, pos_emb, x_mask
|
cosyvoice/utils/__init__.py
ADDED
File without changes
|
cosyvoice/utils/__pycache__/checkpoint.cpython-310.pyc
ADDED
Binary file (3.14 kB). View file
|
|
cosyvoice/utils/__pycache__/checkpoint.cpython-38.pyc
ADDED
Binary file (3.1 kB). View file
|
|
cosyvoice/utils/__pycache__/class_utils.cpython-310.pyc
ADDED
Binary file (1.53 kB). View file
|
|
cosyvoice/utils/__pycache__/cmvn.cpython-310.pyc
ADDED
Binary file (2.24 kB). View file
|
|
cosyvoice/utils/__pycache__/common.cpython-310.pyc
ADDED
Binary file (9.46 kB). View file
|
|
cosyvoice/utils/__pycache__/context_graph.cpython-310.pyc
ADDED
Binary file (7.17 kB). View file
|
|
cosyvoice/utils/__pycache__/convert_cosyvoice_pt.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
cosyvoice/utils/__pycache__/convert_cosyvoice_pt.cpython-38.pyc
ADDED
Binary file (1.1 kB). View file
|
|
cosyvoice/utils/__pycache__/ctc_utils.cpython-310.pyc
ADDED
Binary file (4.28 kB). View file
|
|
cosyvoice/utils/__pycache__/executor.cpython-310.pyc
ADDED
Binary file (2.43 kB). View file
|
|
cosyvoice/utils/__pycache__/file_utils.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
cosyvoice/utils/__pycache__/init_model.cpython-310.pyc
ADDED
Binary file (4.09 kB). View file
|
|
cosyvoice/utils/__pycache__/init_tokenizer.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
cosyvoice/utils/__pycache__/mask.cpython-310.pyc
ADDED
Binary file (9.31 kB). View file
|
|
cosyvoice/utils/__pycache__/scheduler.cpython-310.pyc
ADDED
Binary file (19 kB). View file
|
|
cosyvoice/utils/__pycache__/train_utils.cpython-310.pyc
ADDED
Binary file (3.97 kB). View file
|
|
cosyvoice/utils/class_utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2023-11-28] <[email protected], Xingchen Song>
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from cosyvoice.transformer.activation import Swish
|
18 |
+
from cosyvoice.transformer.subsampling import (
|
19 |
+
LinearNoSubsampling,
|
20 |
+
EmbedinigNoSubsampling,
|
21 |
+
Conv1dSubsampling2,
|
22 |
+
Conv2dSubsampling4,
|
23 |
+
Conv2dSubsampling6,
|
24 |
+
Conv2dSubsampling8,
|
25 |
+
)
|
26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
27 |
+
RelPositionalEncoding,
|
28 |
+
WhisperPositionalEncoding,
|
29 |
+
LearnablePositionalEncoding,
|
30 |
+
NoPositionalEncoding)
|
31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
32 |
+
RelPositionMultiHeadedAttention)
|
33 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
34 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
35 |
+
|
36 |
+
|
37 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
38 |
+
"hardtanh": torch.nn.Hardtanh,
|
39 |
+
"tanh": torch.nn.Tanh,
|
40 |
+
"relu": torch.nn.ReLU,
|
41 |
+
"selu": torch.nn.SELU,
|
42 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
43 |
+
"gelu": torch.nn.GELU,
|
44 |
+
}
|
45 |
+
|
46 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
47 |
+
"linear": LinearNoSubsampling,
|
48 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
49 |
+
"embed": EmbedinigNoSubsampling,
|
50 |
+
"conv1d2": Conv1dSubsampling2,
|
51 |
+
"conv2d": Conv2dSubsampling4,
|
52 |
+
"conv2d6": Conv2dSubsampling6,
|
53 |
+
"conv2d8": Conv2dSubsampling8,
|
54 |
+
'paraformer_dummy': torch.nn.Identity
|
55 |
+
}
|
56 |
+
|
57 |
+
COSYVOICE_EMB_CLASSES = {
|
58 |
+
"embed": PositionalEncoding,
|
59 |
+
"abs_pos": PositionalEncoding,
|
60 |
+
"rel_pos": RelPositionalEncoding,
|
61 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
62 |
+
"no_pos": NoPositionalEncoding,
|
63 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
64 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
65 |
+
}
|
66 |
+
|
67 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
68 |
+
"selfattn": MultiHeadedAttention,
|
69 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
70 |
+
}
|