CHATBOT1 / app.py
FridayMaster's picture
Update app.py
155ba37 verified
raw
history blame
3.91 kB
import gradio as gr
import faiss
import numpy as np
import openai
from sentence_transformers import SentenceTransformer
from nltk.tokenize import sent_tokenize
import nltk
# Download the required NLTK data
nltk.download('punkt')
nltk.download('punkt_tab')
# Paths
faiss_path = "manual_chunked_faiss_index_500.bin"
manual_path = "ubuntu_manual.txt"
# Load the Ubuntu manual from a .txt file
try:
with open(manual_path, "r", encoding="utf-8") as file:
full_text = file.read()
except FileNotFoundError:
raise FileNotFoundError(f"The file {manual_path} was not found.")
# Function to chunk the text into smaller pieces
def chunk_text(text, chunk_size=500):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
for sentence in sentences:
if len(current_chunk) + len(sentence.split()) <= chunk_size:
current_chunk.append(sentence)
else:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
# Apply chunking to the entire text
manual_chunks = chunk_text(full_text, chunk_size=500)
# Load your FAISS index
try:
index = faiss.read_index(faiss_path)
except Exception as e:
raise RuntimeError(f"Failed to load FAISS index: {e}")
# Load your embedding model
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# OpenAI API key
openai.api_key = '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'
# Function to create embeddings
def embed_text(text_list):
embeddings = embedding_model.encode(text_list)
print("Embedding shape:", embeddings.shape) # Debugging: Print shape
return np.array(embeddings, dtype=np.float32)
# Function to retrieve relevant chunks for a user query
def retrieve_chunks(query, k=5):
query_embedding = embed_text([query])
try:
distances, indices = index.search(query_embedding, k=k)
print("Indices:", indices) # Debugging: Print indices
print("Distances:", distances) # Debugging: Print distances
except Exception as e:
raise RuntimeError(f"FAISS search failed: {e}")
if len(indices[0]) == 0:
return []
# Ensure indices are within bounds
valid_indices = [i for i in indices[0] if i < len(manual_chunks)]
if not valid_indices:
return []
# Retrieve relevant chunks
relevant_chunks = [manual_chunks[i] for i in valid_indices]
return relevant_chunks
# Function to truncate long inputs
def truncate_input(text, max_length=512):
tokens = generator_tokenizer.encode(text, truncation=True, max_length=max_length, return_tensors="pt")
return tokens
# Function to perform RAG: Retrieve chunks and generate a response
def rag_response(query, k=5, max_new_tokens=150):
try:
# Step 1: Retrieve relevant chunks
relevant_chunks = retrieve_chunks(query, k=k)
if not relevant_chunks:
return "Sorry, I couldn't find relevant information."
# Step 2: Combine the query with retrieved chunks
augmented_input = query + "\n" + "\n".join(relevant_chunks)
# Truncate and encode the input
inputs = truncate_input(augmented_input)
# Generate response
outputs = generator_model.generate(inputs, max_new_tokens=max_new_tokens)
generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
except Exception as e:
return f"An error occurred: {e}"
# Gradio Interface
iface = gr.Interface(
fn=rag_response,
inputs="text",
outputs="text",
title="RAG Chatbot with FAISS and GPT-3.5",
description="Ask me anything!"
)
if __name__ == "__main__":
iface.launch()