Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from fastapi.responses import HTMLResponse
|
3 |
+
from fastapi.staticfiles import StaticFiles
|
4 |
+
from fastapi.templating import Jinja2Templates
|
5 |
+
import os
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Statische Dateien (CSS, JS) einbinden
|
11 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
12 |
+
templates = Jinja2Templates(directory="templates")
|
13 |
+
|
14 |
+
# HF-Token aus Umgebungsvariable
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
16 |
+
|
17 |
+
@app.get("/", response_class=HTMLResponse)
|
18 |
+
async def root(request: Request):
|
19 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
20 |
+
|
21 |
+
@app.post("/analyze")
|
22 |
+
async def analyze_text(request: Request):
|
23 |
+
data = await request.json()
|
24 |
+
user_text = data.get("text", "")
|
25 |
+
|
26 |
+
# Sentiment-Analyse durchführen
|
27 |
+
client = InferenceClient(token=HF_TOKEN)
|
28 |
+
sentiment = client.text_classification(
|
29 |
+
text=user_text,
|
30 |
+
model="cardiffnlp/twitter-roberta-base-sentiment"
|
31 |
+
)
|
32 |
+
|
33 |
+
# Chat-Antwort generieren
|
34 |
+
messages = data.get("history", [])
|
35 |
+
messages.append({"role": "user", "content": user_text})
|
36 |
+
|
37 |
+
# System-Prompt basierend auf Stimmung
|
38 |
+
best_sentiment = sorted(sentiment, key=lambda x: x["score"], reverse=True)[0]
|
39 |
+
if best_sentiment["label"] == "NEGATIVE" and best_sentiment["score"] > 0.6:
|
40 |
+
messages.append({"role": "system", "content": "Der Patient zeigt starke negative Emotionen – schlage Schuldprojektion oder Verdrängung vor."})
|
41 |
+
elif best_sentiment["label"] == "POSITIVE" and best_sentiment["score"] > 0.6:
|
42 |
+
messages.append({"role": "system", "content": "Der Patient wirkt übertrieben positiv – möglicherweise Abwehrmechanismus durch Kompensation."})
|
43 |
+
|
44 |
+
# Chat-Antwort generieren
|
45 |
+
response = client.chat_completion(
|
46 |
+
model="gpt-3.5-turbo",
|
47 |
+
messages=messages
|
48 |
+
)
|
49 |
+
|
50 |
+
return {
|
51 |
+
"reply": response.generated_text,
|
52 |
+
"toneLabel": best_sentiment["label"],
|
53 |
+
"toneScore": best_sentiment["score"]
|
54 |
+
}
|