Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,9 @@ import torch
|
|
3 |
import gradio as gr
|
4 |
import datetime
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
6 |
-
from safetensors.torch import load_file
|
7 |
|
8 |
import spaces
|
9 |
|
10 |
-
@spaces.GPU
|
11 |
-
def use_gpu():
|
12 |
-
import torch
|
13 |
-
print("Torch CUDA available:", torch.cuda.is_available())
|
14 |
-
return {"cuda_available": torch.cuda.is_available()}
|
15 |
-
|
16 |
-
|
17 |
# Constants
|
18 |
MODEL_CONFIG = {
|
19 |
"G0-Release": "FlameF0X/Snowflake-G0-Release",
|
@@ -45,48 +37,54 @@ css = """
|
|
45 |
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
|
46 |
"""
|
47 |
|
|
|
48 |
model_registry = {}
|
49 |
|
50 |
-
def
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
torch_dtype=torch.float32,
|
67 |
-
device_map=None
|
68 |
-
)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
pipeline = TextGenerationPipeline(
|
71 |
model=model,
|
72 |
tokenizer=tokenizer,
|
73 |
return_full_text=False,
|
74 |
-
max_length=MAX_LENGTH
|
|
|
75 |
)
|
76 |
-
|
77 |
-
model_registry[name] = (model, tokenizer, pipeline)
|
78 |
-
|
79 |
-
def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
|
80 |
-
if history is None:
|
81 |
-
history = []
|
82 |
-
history.append({"role": "user", "content": prompt})
|
83 |
-
|
84 |
-
try:
|
85 |
-
if model_version not in model_registry:
|
86 |
-
raise ValueError(f"Model '{model_version}' not found.")
|
87 |
-
|
88 |
-
_, tokenizer, pipeline = model_registry[model_version]
|
89 |
-
|
90 |
outputs = pipeline(
|
91 |
prompt,
|
92 |
do_sample=temperature > 0,
|
@@ -97,19 +95,43 @@ def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_toke
|
|
97 |
pad_token_id=tokenizer.pad_token_id,
|
98 |
num_return_sequences=1
|
99 |
)
|
100 |
-
|
101 |
response = outputs[0]["generated_text"]
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
formatted_history = []
|
105 |
for entry in history:
|
106 |
prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
|
107 |
formatted_history.append(f"{prefix}{entry['content']}")
|
108 |
-
|
109 |
return response, history, "\n\n".join(formatted_history)
|
110 |
-
|
111 |
except Exception as e:
|
112 |
-
error_msg = f"Error
|
113 |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
|
114 |
return error_msg, history, str(history)
|
115 |
|
@@ -230,21 +252,9 @@ def create_demo():
|
|
230 |
|
231 |
return demo
|
232 |
|
233 |
-
# Initialize
|
234 |
-
print("
|
235 |
-
|
236 |
-
load_all_models()
|
237 |
-
print("All models loaded successfully!")
|
238 |
-
demo = create_demo()
|
239 |
-
except Exception as e:
|
240 |
-
print(f"Error loading models: {e}")
|
241 |
-
with gr.Blocks(css=css) as demo:
|
242 |
-
gr.HTML(f"""
|
243 |
-
<div class="header" style="background-color: #ffebee;">
|
244 |
-
<h1><span class="snowflake-icon">⚠️</span> Error Loading Models</h1>
|
245 |
-
<p>There was a problem loading the Snowflake models: {str(e)}</p>
|
246 |
-
</div>
|
247 |
-
""")
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
-
demo.launch()
|
|
|
3 |
import gradio as gr
|
4 |
import datetime
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
|
|
6 |
|
7 |
import spaces
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Constants
|
10 |
MODEL_CONFIG = {
|
11 |
"G0-Release": "FlameF0X/Snowflake-G0-Release",
|
|
|
37 |
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
|
38 |
"""
|
39 |
|
40 |
+
# Global registry - models will be loaded on-demand within GPU function
|
41 |
model_registry = {}
|
42 |
|
43 |
+
def load_model_cpu(model_id):
|
44 |
+
"""Load model on CPU only - no CUDA initialization"""
|
45 |
+
print(f"Loading model on CPU: {model_id}")
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
47 |
+
if tokenizer.pad_token is None:
|
48 |
+
tokenizer.pad_token = tokenizer.eos_token
|
49 |
+
|
50 |
+
# Load model on CPU only
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_id,
|
53 |
+
torch_dtype=torch.float32,
|
54 |
+
device_map=None, # No device mapping
|
55 |
+
low_cpu_mem_usage=True
|
56 |
+
)
|
57 |
+
|
58 |
+
return model, tokenizer
|
|
|
|
|
|
|
59 |
|
60 |
+
@spaces.GPU
|
61 |
+
def generate_text_gpu(prompt, model_version, temperature, top_p, top_k, max_new_tokens):
|
62 |
+
"""GPU-decorated function for text generation"""
|
63 |
+
try:
|
64 |
+
# Load model if not already loaded
|
65 |
+
if model_version not in model_registry:
|
66 |
+
model_id = MODEL_CONFIG[model_version]
|
67 |
+
model, tokenizer = load_model_cpu(model_id)
|
68 |
+
model_registry[model_version] = (model, tokenizer)
|
69 |
+
|
70 |
+
model, tokenizer = model_registry[model_version]
|
71 |
+
|
72 |
+
# Move model to GPU only inside this function
|
73 |
+
if torch.cuda.is_available():
|
74 |
+
model = model.cuda()
|
75 |
+
device = "cuda"
|
76 |
+
else:
|
77 |
+
device = "cpu"
|
78 |
+
|
79 |
+
# Create pipeline inside GPU function
|
80 |
pipeline = TextGenerationPipeline(
|
81 |
model=model,
|
82 |
tokenizer=tokenizer,
|
83 |
return_full_text=False,
|
84 |
+
max_length=MAX_LENGTH,
|
85 |
+
device=device
|
86 |
)
|
87 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
outputs = pipeline(
|
89 |
prompt,
|
90 |
do_sample=temperature > 0,
|
|
|
95 |
pad_token_id=tokenizer.pad_token_id,
|
96 |
num_return_sequences=1
|
97 |
)
|
98 |
+
|
99 |
response = outputs[0]["generated_text"]
|
100 |
+
return response, None
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
error_msg = f"Error generating response: {str(e)}"
|
104 |
+
return error_msg, str(e)
|
105 |
|
106 |
+
def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
|
107 |
+
"""Main generation function that calls GPU function"""
|
108 |
+
if history is None:
|
109 |
+
history = []
|
110 |
+
|
111 |
+
# Add user message to history
|
112 |
+
history.append({"role": "user", "content": prompt})
|
113 |
+
|
114 |
+
try:
|
115 |
+
# Call GPU function
|
116 |
+
response, error = generate_text_gpu(
|
117 |
+
prompt, model_version, temperature, top_p, top_k, max_new_tokens
|
118 |
+
)
|
119 |
+
|
120 |
+
if error:
|
121 |
+
history.append({"role": "assistant", "content": f"[ERROR] {response}", "model": model_version})
|
122 |
+
else:
|
123 |
+
history.append({"role": "assistant", "content": response, "model": model_version})
|
124 |
+
|
125 |
+
# Format history for display
|
126 |
formatted_history = []
|
127 |
for entry in history:
|
128 |
prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
|
129 |
formatted_history.append(f"{prefix}{entry['content']}")
|
130 |
+
|
131 |
return response, history, "\n\n".join(formatted_history)
|
132 |
+
|
133 |
except Exception as e:
|
134 |
+
error_msg = f"Error in generation pipeline: {str(e)}"
|
135 |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
|
136 |
return error_msg, history, str(history)
|
137 |
|
|
|
252 |
|
253 |
return demo
|
254 |
|
255 |
+
# Initialize demo without loading models (they'll load on-demand)
|
256 |
+
print("Initializing Snowflake Models Demo...")
|
257 |
+
demo = create_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
if __name__ == "__main__":
|
260 |
+
demo.launch()
|