OpenWB / client.py
FlameF0X's picture
Create client.py
e38b1c0 verified
import requests
import time
from typing import Dict, Any, Optional
import os
class MLTracker:
"""Python client for ML Tracker - Free W&B Alternative"""
def __init__(self, api_key: str, base_url: str = "https://your-space-url.hf.space"):
self.api_key = api_key
self.base_url = base_url.rstrip('/')
self.current_experiment = None
self.step = 0
def init(self, experiment_name: str, config: Optional[Dict[str, Any]] = None):
self.current_experiment = experiment_name
self.step = 0
if config:
self.log_config(experiment_name, config)
def log_config(self, experiment_name: str, config: Dict[str, Any]):
try:
response = requests.post(
f"{self.base_url}/api/log",
json={
"api_key": self.api_key,
"experiment": experiment_name,
"step": 0,
"metrics": {},
"config": config,
"timestamp": time.time()
}
)
response.raise_for_status()
return response.json()
except Exception as e:
print(f"Warning: Failed to log config: {e}")
return None
def log(self, metrics: Dict[str, Any], step: Optional[int] = None):
if not self.current_experiment:
raise ValueError("No experiment initialized. Call init() first.")
if step is None:
self.step += 1
step = self.step
else:
self.step = max(self.step, step)
try:
response = requests.post(
f"{self.base_url}/api/log",
json={
"api_key": self.api_key,
"experiment": self.current_experiment,
"step": step,
"metrics": metrics,
"timestamp": time.time()
}
)
response.raise_for_status()
return response.json()
except Exception as e:
print(f"Warning: Failed to log metrics: {e}")
return None
def delete_experiment(self, experiment_name: str):
try:
response = requests.delete(
f"{self.base_url}/api/experiment/{experiment_name}",
params={"api_key": self.api_key}
)
response.raise_for_status()
return response.json()
except Exception as e:
print(f"Error deleting experiment: {e}")
return None
def get_experiments(self):
try:
response = requests.get(
f"{self.base_url}/api/experiments",
params={"api_key": self.api_key}
)
response.raise_for_status()
return response.json().get("experiments", [])
except Exception as e:
print(f"Error fetching experiments: {e}")
return []
def get_experiment(self, experiment_name: str):
try:
response = requests.get(
f"{self.base_url}/api/experiment/{experiment_name}",
params={"api_key": self.api_key}
)
response.raise_for_status()
return response.json()
except Exception as e:
print(f"Error fetching experiment: {e}")
return None
def finish(self):
self.current_experiment = None
self.step = 0
# Global tracker and convenience functions
_global_tracker = None
def init(experiment_name: str, config: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None, base_url: Optional[str] = None):
global _global_tracker
if api_key is None:
api_key = os.environ.get("ML_TRACKER_API_KEY")
if not api_key:
raise ValueError("API key not provided and ML_TRACKER_API_KEY not set")
if base_url is None:
base_url = os.environ.get("ML_TRACKER_BASE_URL", "https://your-space-url.hf.space")
_global_tracker = MLTracker(api_key, base_url)
_global_tracker.init(experiment_name, config)
def log(metrics: Dict[str, Any], step: Optional[int] = None):
if _global_tracker is None:
raise ValueError("No experiment initialized. Call init() first.")
return _global_tracker.log(metrics, step)
def finish():
global _global_tracker
if _global_tracker:
_global_tracker.finish()
_global_tracker = None
if __name__ == "__main__":
# Example usage
tracker = MLTracker(
api_key="your-api-key-here",
base_url="https://your-space-url.hf.space"
)
tracker.init("my_experiment", config={
"model": "ResNet50",
"dataset": "CIFAR-10",
"learning_rate": 0.001,
"batch_size": 32
})
for epoch in range(10):
loss = 2.0 * (0.9 ** epoch) + 0.1
accuracy = 1.0 - (0.9 ** epoch)
tracker.log({
"loss": loss,
"accuracy": accuracy,
"epoch": epoch
})
tracker.finish()
init("another_experiment", config={"model": "BERT"})
for step in range(5):
log({"loss": 1.0 / (step + 1), "step": step})
finish()
experiments = tracker.get_experiments()
print(f"Found {len(experiments)} experiments")
if experiments:
exp_data = tracker.get_experiment(experiments[0]["experiment"])
if exp_data:
print(f"Experiment has {len(exp_data.get('metrics', []))} metric entries")