File size: 6,941 Bytes
6a30001 38d21c4 6a30001 38d21c4 6a30001 d9ab1b1 6a30001 8b657a5 6a30001 8b657a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
---
title: OpenWB
emoji: π
colorFrom: red
colorTo: red
sdk: docker
app_port: 8501
tags:
- streamlit
pinned: false
short_description: Streamlit template space
---
# π€ OpenWB - Free W&B Alternative
A free, open-source experiment tracking platform hosted on HuggingFace Spaces. Track your ML experiments with beautiful dashboards, all powered by HuggingFace infrastructure.
## β¨ Features
- π **HuggingFace Authentication** - Connect with your HF token
- π **Interactive Dashboards** - Beautiful charts powered by Plotly
- π **Easy API** - Simple Python client for logging metrics
- πΎ **Free Storage** - Uses HuggingFace Hub for data persistence
- π **Real-time Updates** - Live dashboard updates
- π **Multiple Chart Types** - Line plots, scatter plots, histograms
- π― **Experiment Comparison** - Compare multiple runs
- π **Configuration Tracking** - Store and view experiment configs
## π Quick Start
### 1. Deploy on HuggingFace Spaces
1. Go to [HuggingFace Spaces](https://huggingface.co/new-space)
2. Choose **Docker** as SDK
3. Select **Streamlit** template
4. Copy all the files from this repository
5. Deploy your space
### 2. Get Your API Key
1. Visit your deployed space
2. Connect with your HuggingFace token
3. Copy your generated API key from the dashboard
### 3. Install Client Library
```bash
pip install requests
```
### 4. Start Tracking
```python
from client import MLTracker
# Initialize tracker
tracker = MLTracker(
api_key="your-api-key-here",
base_url="https://your-space-name.hf.space"
)
# Start experiment
tracker.init("my_first_experiment", config={
"model": "ResNet50",
"dataset": "CIFAR-10",
"learning_rate": 0.001,
"batch_size": 32
})
# Log metrics during training
for epoch in range(100):
# Your training code here
loss = train_one_epoch()
accuracy = evaluate_model()
# Log to ML Tracker
tracker.log({
"loss": loss,
"accuracy": accuracy,
"epoch": epoch
})
# Finish experiment
tracker.finish()
```
## π Project Structure
```
ml-tracker/
βββ Dockerfile # HuggingFace Spaces Docker config
βββ requirements.txt # Python dependencies
βββ app.py # Main Streamlit dashboard
βββ api.py # FastAPI backend (optional)
βββ client.py # Python client library
βββ README.md # This file
```
## π§ Configuration
### Environment Variables
You can set these environment variables for easier usage:
```bash
export ML_TRACKER_API_KEY="your-api-key"
export ML_TRACKER_BASE_URL="https://your-space-name.hf.space"
```
### HuggingFace Space Settings
In your Space settings, you can:
- Enable/disable public access
- Set custom domain
- Configure hardware (upgrade for better performance)
## π‘ Usage Examples
### Basic Usage
```python
import mltracker
# Initialize with environment variables
mltracker.init("experiment_name", config={
"model": "BERT",
"dataset": "IMDB"
})
# Log metrics
mltracker.log({"loss": 0.5, "accuracy": 0.85})
mltracker.log({"loss": 0.3, "accuracy": 0.90})
# Finish
mltracker.finish()
```
### Advanced Usage
```python
from client import MLTracker
tracker = MLTracker(api_key="...", base_url="...")
# Multiple experiments
for lr in [0.001, 0.01, 0.1]:
tracker.init(f"lr_{lr}", config={"learning_rate": lr})
for epoch in range(10):
# Training code
loss = train_with_lr(lr)
tracker.log({"loss": loss})
tracker.finish()
# Get experiment data
experiments = tracker.get_experiments()
for exp in experiments:
print(f"Experiment: {exp['experiment']}")
print(f"Steps: {exp['total_steps']}")
```
### PyTorch Integration
```python
import torch
import torch.nn as nn
from client import MLTracker
# Initialize tracker
tracker = MLTracker(api_key="...", base_url="...")
tracker.init("pytorch_experiment", config={
"model": "ResNet18",
"optimizer": "Adam",
"learning_rate": 0.001
})
# Training loop
model = resnet18()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
# Forward pass
output = model(data)
loss = criterion(output, target)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Log metrics
if batch_idx % 100 == 0:
tracker.log({
"loss": loss.item(),
"epoch": epoch,
"batch": batch_idx
})
# Validation
val_accuracy = evaluate(model, val_loader)
tracker.log({"val_accuracy": val_accuracy})
```
## π¨ Dashboard Features
### Metrics Visualization
- **Line Charts** - Track metrics over time
- **Multi-metric Plots** - Compare different metrics
- **Real-time Updates** - Live dashboard refresh
### Experiment Management
- **Experiment List** - View all your experiments
- **Configuration Viewer** - See experiment settings
- **Data Export** - Download raw data
### Comparison Tools
- **Multi-experiment View** - Compare different runs
- **Metric Filtering** - Focus on specific metrics
- **Time Range Selection** - Zoom into specific periods
## π Security
- **Token-based Auth** - Secure HuggingFace token authentication
- **API Key Management** - Unique API keys per user
- **Data Isolation** - Each user's data is separate
- **HTTPS Only** - All communication encrypted
## π οΈ Development
### Local Development
```bash
# Clone repository
git clone https://github.com/yourusername/ml-tracker
cd ml-tracker
# Install dependencies
pip install -r requirements.txt
# Run locally
streamlit run app.py
```
### Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Submit a pull request
## π API Reference
### MLTracker Class
```python
class MLTracker:
def __init__(self, api_key: str, base_url: str)
def init(self, experiment_name: str, config: dict = None)
def log(self, metrics: dict, step: int = None)
def get_experiments(self) -> list
def get_experiment(self, name: str) -> dict
def delete_experiment(self, name: str)
def finish(self)
```
### Global Functions
```python
def init(experiment_name: str, config: dict = None, api_key: str = None, base_url: str = None)
def log(metrics: dict, step: int = None)
def finish()
```
## π€ Support
- **Issues** - Report bugs on GitHub
- **Discussions** - Ask questions in GitHub Discussions
- **Documentation** - Check the wiki for detailed guides
## π License
MIT License - See LICENSE file for details
## π Acknowledgments
- HuggingFace for providing free hosting
- Plotly for beautiful charts
- Streamlit for easy web apps
- The ML community for inspiration
---
**Happy Experimenting!** π§ͺβ¨ |