Finger_Counter / app.py
FiratIsmailoglu's picture
Upload 3 files
87b8729 verified
import torch
import torch.nn as nn
import torchvision
import gradio as gr
from PIL import Image
from torchvision import transforms
agirliklar=torchvision.models.EfficientNet_B2_Weights.DEFAULT
eff_don=agirliklar.transforms()
model=torchvision.models.efficientnet_b2(weights=agirliklar)
model.classifier=nn.Sequential(nn.Linear(1408,100),nn.ReLU(),nn.Linear(100,5))
model.load_state_dict(torch.load('model.pth'))
class_names=['beş', 'bir', 'dört', 'iki', 'üç']
def predict(img):
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
# img=Image.open(img)
# Transform the target image and add a batch dimension
img = eff_don(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
model.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(model(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Return the prediction dictionary and prediction time
return pred_labels_and_probs
# Create title, description and article strings
title = "El işaretleri"
description = "Birden beşe kadar olan sayilarin el işaretlerini anlar"
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=5, label="Predictions")], # what are the outputs?
# gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
# examples=example_list,
title=title,
description=description)
# Launch the demo!
demo.launch(debug=False, # print errors locally?
share=True) # generate a publically shareable URL?