Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torchvision | |
import gradio as gr | |
from PIL import Image | |
from torchvision import transforms | |
agirliklar=torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
eff_don=agirliklar.transforms() | |
model=torchvision.models.efficientnet_b2(weights=agirliklar) | |
model.classifier=nn.Sequential(nn.Linear(1408,100),nn.ReLU(),nn.Linear(100,5)) | |
model.load_state_dict(torch.load('model.pth')) | |
class_names=['beş', 'bir', 'dört', 'iki', 'üç'] | |
def predict(img): | |
"""Transforms and performs a prediction on img and returns prediction and time taken. | |
""" | |
# Start the timer | |
# img=Image.open(img) | |
# Transform the target image and add a batch dimension | |
img = eff_don(img).unsqueeze(0) | |
# Put model into evaluation mode and turn on inference mode | |
model.eval() | |
with torch.inference_mode(): | |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
pred_probs = torch.softmax(model(img), dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Return the prediction dictionary and prediction time | |
return pred_labels_and_probs | |
# Create title, description and article strings | |
title = "El işaretleri" | |
description = "Birden beşe kadar olan sayilarin el işaretlerini anlar" | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=5, label="Predictions")], # what are the outputs? | |
# gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# examples=example_list, | |
title=title, | |
description=description) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=True) # generate a publically shareable URL? |