Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
Sentiment pipeline
|
6 |
+
sentiment = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
7 |
+
|
8 |
+
"""
|
9 |
+
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
+
"""
|
11 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
+
|
13 |
+
|
14 |
+
def get_sentiment(text):
|
15 |
+
output = sentiment(text)
|
16 |
+
return f'The sentence was classified as "{output[0]["label"]}" with {output[0]["score"]*100}% confidence'
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
"""
|
21 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
22 |
+
"""
|
23 |
+
|
24 |
+
title = "Get a sentiment on you text"
|
25 |
+
description = """
|
26 |
+
The bot was takes your text and classify it as either 'Positive' or 'Negative'
|
27 |
+
"""
|
28 |
+
|
29 |
+
demo = gr.Interface(
|
30 |
+
fn=get_sentiment,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title=title,
|
34 |
+
description=description,
|
35 |
+
examples=[["I really enjoyed my stay !"], ["Worst rental I ever got"]],
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
if name == "main":
|
40 |
+
demo.launch()
|