import streamlit as st import os from embedding import load_embeddings from vectorstore import load_or_build_vectorstore from chain_setup import build_conversational_chain def main(): st.title("💬 المحادثة التفاعلية - إدارة البيانات وحماية البيانات الشخصية") # Apply RTL custom CSS for right-to-left text alignment st.markdown( """ """, unsafe_allow_html=True ) # Paths and constants local_file = "Policies001.pdf" index_folder = "faiss_index" # Step 1: Load Arabic Embeddings embeddings = load_embeddings() # Step 2: Build or load the VectorStore vectorstore = load_or_build_vectorstore(local_file, index_folder, embeddings) # Step 3: Build the Conversational Retrieval Chain qa_chain = build_conversational_chain(vectorstore) # Step 4: Session State for UI Chat if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية!"} ] # Display existing messages with RTL styling for msg in st.session_state["messages"]: with st.chat_message(msg["role"]): st.markdown(f'