NDMO_Arabic_assistant / chain_setup.py
Fawaz0ibra's picture
Update chain_setup.py
23cbc22 verified
raw
history blame contribute delete
2.24 kB
import os
from huggingface_hub import hf_hub_download
from langchain.llms import LlamaCpp
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
def load_llm():
"""
Downloads the GGUF model for Arabic and loads it via llama-cpp.
"""
model_file = hf_hub_download(
repo_id="mobeidat/c4ai-command-r7b-arabic-02-2025-Q4_K_M-GGUF",
filename="c4ai-command-r7b-arabic-02-2025-q4_k_m.gguf",
local_dir="./models",
local_dir_use_symlinks=False
)
# Pass an empty grammar file to bypass Jinja template parsing.
llm = LlamaCpp(
model_path=model_file,
flash_attn=False,
n_ctx=2048,
n_batch=512,
chat_format="chatml",
grammar=None,
streaming=True,
grammar_path=None, # ensure this file exists and is empty
use_jinja=False,
rope_freq_base=10000.0,
rope_freq_scale=1.0,
use_mmap=True,
last_n_tokens_size=64,
echo=False,
repeat_penalty=1.1,
temperature=0.8,
top_k=40,
top_p=0.95,
logprobs=None,
callback_manager=None,
custom_get_token_ids = None,
lora_base = None,
lora_path = None,
max_tokens = 256,
metadata= None,
n_gpu_layers= None,
n_threads= None,
stop=[],
suffix= None,
tags = None,
use_mlock=False,
vocab_only=False,
logits_all= False,
callbacks=None,
f16_kv=True,
n_parts=-1,
seed=-1,
verbose=True,
client=None,
cache=None
)
return llm
def build_conversational_chain(vectorstore):
"""
Creates a ConversationalRetrievalChain using the local llama-cpp-based LLM
and a ConversationBufferMemory for multi-turn Q&A.
"""
llm = load_llm()
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
memory=memory,
verbose=True
)
return qa_chain