Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
-
pipe =
|
| 12 |
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
pipe = pipe.to(device)
|
| 14 |
else:
|
| 15 |
-
pipe =
|
| 16 |
pipe = pipe.to(device)
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
MAX_IMAGE_SIZE =
|
| 20 |
|
| 21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 22 |
|
|
@@ -37,12 +37,6 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
| 37 |
|
| 38 |
return image
|
| 39 |
|
| 40 |
-
examples = [
|
| 41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 42 |
-
"An astronaut riding a green horse",
|
| 43 |
-
"A delicious ceviche cheesecake slice",
|
| 44 |
-
]
|
| 45 |
-
|
| 46 |
css="""
|
| 47 |
#col-container {
|
| 48 |
margin: 0 auto;
|
|
@@ -50,17 +44,12 @@ css="""
|
|
| 50 |
}
|
| 51 |
"""
|
| 52 |
|
| 53 |
-
if torch.cuda.is_available():
|
| 54 |
-
power_device = "GPU"
|
| 55 |
-
else:
|
| 56 |
-
power_device = "CPU"
|
| 57 |
|
| 58 |
with gr.Blocks(css=css) as demo:
|
| 59 |
|
| 60 |
with gr.Column(elem_id="col-container"):
|
| 61 |
gr.Markdown(f"""
|
| 62 |
-
#
|
| 63 |
-
Currently running on {power_device}.
|
| 64 |
""")
|
| 65 |
|
| 66 |
with gr.Row():
|
|
@@ -68,7 +57,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 68 |
prompt = gr.Text(
|
| 69 |
label="Prompt",
|
| 70 |
show_label=False,
|
| 71 |
-
max_lines=
|
| 72 |
placeholder="Enter your prompt",
|
| 73 |
container=False,
|
| 74 |
)
|
|
@@ -103,7 +92,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 103 |
minimum=256,
|
| 104 |
maximum=MAX_IMAGE_SIZE,
|
| 105 |
step=32,
|
| 106 |
-
value=
|
| 107 |
)
|
| 108 |
|
| 109 |
height = gr.Slider(
|
|
@@ -111,7 +100,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 111 |
minimum=256,
|
| 112 |
maximum=MAX_IMAGE_SIZE,
|
| 113 |
step=32,
|
| 114 |
-
value=
|
| 115 |
)
|
| 116 |
|
| 117 |
with gr.Row():
|
|
@@ -121,7 +110,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 121 |
minimum=0.0,
|
| 122 |
maximum=10.0,
|
| 123 |
step=0.1,
|
| 124 |
-
value=
|
| 125 |
)
|
| 126 |
|
| 127 |
num_inference_steps = gr.Slider(
|
|
@@ -129,14 +118,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 129 |
minimum=1,
|
| 130 |
maximum=12,
|
| 131 |
step=1,
|
| 132 |
-
value=
|
| 133 |
)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
examples = examples,
|
| 137 |
-
inputs = [prompt]
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
run_button.click(
|
| 141 |
fn = infer,
|
| 142 |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from diffusers import StableDiffusion3Pipeline
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
| 12 |
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
pipe = pipe.to(device)
|
| 14 |
else:
|
| 15 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
| 16 |
pipe = pipe.to(device)
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
+
MAX_IMAGE_SIZE = 2048
|
| 20 |
|
| 21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 22 |
|
|
|
|
| 37 |
|
| 38 |
return image
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
css="""
|
| 41 |
#col-container {
|
| 42 |
margin: 0 auto;
|
|
|
|
| 44 |
}
|
| 45 |
"""
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
with gr.Blocks(css=css) as demo:
|
| 49 |
|
| 50 |
with gr.Column(elem_id="col-container"):
|
| 51 |
gr.Markdown(f"""
|
| 52 |
+
# FallnAI Text2Image
|
|
|
|
| 53 |
""")
|
| 54 |
|
| 55 |
with gr.Row():
|
|
|
|
| 57 |
prompt = gr.Text(
|
| 58 |
label="Prompt",
|
| 59 |
show_label=False,
|
| 60 |
+
max_lines=4,
|
| 61 |
placeholder="Enter your prompt",
|
| 62 |
container=False,
|
| 63 |
)
|
|
|
|
| 92 |
minimum=256,
|
| 93 |
maximum=MAX_IMAGE_SIZE,
|
| 94 |
step=32,
|
| 95 |
+
value=1024,
|
| 96 |
)
|
| 97 |
|
| 98 |
height = gr.Slider(
|
|
|
|
| 100 |
minimum=256,
|
| 101 |
maximum=MAX_IMAGE_SIZE,
|
| 102 |
step=32,
|
| 103 |
+
value=1024,
|
| 104 |
)
|
| 105 |
|
| 106 |
with gr.Row():
|
|
|
|
| 110 |
minimum=0.0,
|
| 111 |
maximum=10.0,
|
| 112 |
step=0.1,
|
| 113 |
+
value=2.0,
|
| 114 |
)
|
| 115 |
|
| 116 |
num_inference_steps = gr.Slider(
|
|
|
|
| 118 |
minimum=1,
|
| 119 |
maximum=12,
|
| 120 |
step=1,
|
| 121 |
+
value=4,
|
| 122 |
)
|
| 123 |
|
| 124 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
run_button.click(
|
| 126 |
fn = infer,
|
| 127 |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|