# Copyright (c) OpenMMLab. All rights reserved.
"""This file holding some environment constant for sharing by other files."""
import os
import os.path as osp
import subprocess
import sys
from collections import OrderedDict, defaultdict

import numpy as np
import torch


def is_rocm_pytorch() -> bool:
    """Check whether the PyTorch is compiled on ROCm."""
    is_rocm = False
    if TORCH_VERSION != "parrots":
        try:
            from torch.utils.cpp_extension import ROCM_HOME
            is_rocm = True if ((torch.version.hip is not None) and
                               (ROCM_HOME is not None)) else False
        except ImportError:
            pass
    return is_rocm

TORCH_VERSION = torch.__version__

def get_build_config():
    """Obtain the build information of PyTorch or Parrots."""
    if TORCH_VERSION == "parrots":
        from parrots.config import get_build_info
        return get_build_info()
    else:
        return torch.__config__.show()

try:
    import torch_musa  # noqa: F401
    IS_MUSA_AVAILABLE = True
except Exception:
    IS_MUSA_AVAILABLE = False

def is_musa_available() -> bool:
    return IS_MUSA_AVAILABLE

def is_cuda_available() -> bool:
    """Returns True if cuda devices exist."""
    return torch.cuda.is_available()

def _get_cuda_home():
    if TORCH_VERSION == "parrots":
        from parrots.utils.build_extension import CUDA_HOME
    else:
        if is_rocm_pytorch():
            from torch.utils.cpp_extension import ROCM_HOME
            CUDA_HOME = ROCM_HOME
        else:
            from torch.utils.cpp_extension import CUDA_HOME
    return CUDA_HOME


def _get_musa_home():
    return os.environ.get("MUSA_HOME")


def collect_env():
    """Collect the information of the running environments.

    Returns:
        dict: The environment information. The following fields are contained.

            - sys.platform: The variable of ``sys.platform``.
            - Python: Python version.
            - CUDA available: Bool, indicating if CUDA is available.
            - GPU devices: Device type of each GPU.
            - CUDA_HOME (optional): The env var ``CUDA_HOME``.
            - NVCC (optional): NVCC version.
            - GCC: GCC version, "n/a" if GCC is not installed.
            - MSVC: Microsoft Virtual C++ Compiler version, Windows only.
            - PyTorch: PyTorch version.
            - PyTorch compiling details: The output of \
                ``torch.__config__.show()``.
            - TorchVision (optional): TorchVision version.
            - OpenCV (optional): OpenCV version.
    """
    from distutils import errors

    env_info = OrderedDict()
    env_info["sys.platform"] = sys.platform
    env_info["Python"] = sys.version.replace("\n", "")

    cuda_available = is_cuda_available()
    musa_available = is_musa_available()
    env_info["CUDA available"] = cuda_available
    env_info["MUSA available"] = musa_available
    env_info["numpy_random_seed"] = np.random.get_state()[1][0]

    if cuda_available:
        devices = defaultdict(list)
        for k in range(torch.cuda.device_count()):
            devices[torch.cuda.get_device_name(k)].append(str(k))
        for name, device_ids in devices.items():
            env_info["GPU " + ",".join(device_ids)] = name

        CUDA_HOME = _get_cuda_home()
        env_info["CUDA_HOME"] = CUDA_HOME

        if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
            if CUDA_HOME == "/opt/rocm":
                try:
                    nvcc = osp.join(CUDA_HOME, "hip/bin/hipcc")
                    nvcc = subprocess.check_output(
                        f"\"{nvcc}\" --version", shell=True)
                    nvcc = nvcc.decode("utf-8").strip()
                    release = nvcc.rfind("HIP version:")
                    build = nvcc.rfind("")
                    nvcc = nvcc[release:build].strip()
                except subprocess.SubprocessError:
                    nvcc = "Not Available"
            else:
                try:
                    nvcc = osp.join(CUDA_HOME, "bin/nvcc")
                    nvcc = subprocess.check_output(f"\"{nvcc}\" -V", shell=True)
                    nvcc = nvcc.decode("utf-8").strip()
                    release = nvcc.rfind("Cuda compilation tools")
                    build = nvcc.rfind("Build ")
                    nvcc = nvcc[release:build].strip()
                except subprocess.SubprocessError:
                    nvcc = "Not Available"
            env_info["NVCC"] = nvcc
    elif musa_available:
        devices = defaultdict(list)
        for k in range(torch.musa.device_count()):
            devices[torch.musa.get_device_name(k)].append(str(k))
        for name, device_ids in devices.items():
            env_info["GPU " + ",".join(device_ids)] = name

        MUSA_HOME = _get_musa_home()
        env_info["MUSA_HOME"] = MUSA_HOME

        if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
            try:
                mcc = osp.join(MUSA_HOME, "bin/mcc")
                subprocess.check_output(f"\"{mcc}\" -v", shell=True)
            except subprocess.SubprocessError:
                mcc = "Not Available"
            env_info["mcc"] = mcc
    try:
        # Check C++ Compiler.
        # For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
        # indicating the compiler used, we use this to get the compiler name
        import io
        import sysconfig
        cc = sysconfig.get_config_var("CC")
        if cc:
            cc = osp.basename(cc.split()[0])
            cc_info = subprocess.check_output(f"{cc} --version", shell=True)
            env_info["GCC"] = cc_info.decode("utf-8").partition(
                "\n")[0].strip()
        else:
            # on Windows, cl.exe is not in PATH. We need to find the path.
            # distutils.ccompiler.new_compiler() returns a msvccompiler
            # object and after initialization, path to cl.exe is found.
            import locale
            import os
            from distutils.ccompiler import new_compiler
            ccompiler = new_compiler()
            ccompiler.initialize()
            cc = subprocess.check_output(
                f"{ccompiler.cc}", stderr=subprocess.STDOUT, shell=True)
            encoding = os.device_encoding(
                sys.stdout.fileno()) or locale.getpreferredencoding()
            env_info["MSVC"] = cc.decode(encoding).partition("\n")[0].strip()
            env_info["GCC"] = "n/a"
    except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
        env_info["GCC"] = "n/a"
    except io.UnsupportedOperation as e:
        # JupyterLab on Windows changes sys.stdout, which has no `fileno` attr
        # Refer to: https://github.com/open-mmlab/mmengine/issues/931
        # TODO: find a solution to get compiler info in Windows JupyterLab,
        # while preserving backward-compatibility in other systems.
        env_info["MSVC"] = f"n/a, reason: {str(e)}"

    env_info["PyTorch"] = torch.__version__
    env_info["PyTorch compiling details"] = get_build_config()

    try:
        import torchvision
        env_info["TorchVision"] = torchvision.__version__
    except ModuleNotFoundError:
        pass

    try:
        import cv2
        env_info["OpenCV"] = cv2.__version__
    except ImportError:
        pass


    return env_info

if __name__ == "__main__":
    for name, val in collect_env().items():
        print(f"{name}: {val}")