Upload 4 files
Browse files- hyvideo/vae/__init__.py +62 -62
hyvideo/vae/__init__.py
CHANGED
@@ -1,62 +1,62 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
6 |
-
from ..constants import VAE_PATH, PRECISION_TO_TYPE
|
7 |
-
|
8 |
-
def load_vae(vae_type: str="884-16c-hy",
|
9 |
-
vae_precision: str=None,
|
10 |
-
sample_size: tuple=None,
|
11 |
-
vae_path: str=None,
|
12 |
-
logger=None,
|
13 |
-
device=None
|
14 |
-
):
|
15 |
-
"""the fucntion to load the 3D VAE model
|
16 |
-
|
17 |
-
Args:
|
18 |
-
vae_type (str): the type of the 3D VAE model. Defaults to "884-16c-hy".
|
19 |
-
vae_precision (str, optional): the precision to load vae. Defaults to None.
|
20 |
-
sample_size (tuple, optional): the tiling size. Defaults to None.
|
21 |
-
vae_path (str, optional): the path to vae. Defaults to None.
|
22 |
-
logger (_type_, optional): logger. Defaults to None.
|
23 |
-
device (_type_, optional): device to load vae. Defaults to None.
|
24 |
-
"""
|
25 |
-
if vae_path is None:
|
26 |
-
vae_path = VAE_PATH[vae_type]
|
27 |
-
|
28 |
-
if logger is not None:
|
29 |
-
logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}")
|
30 |
-
config = AutoencoderKLCausal3D.load_config(vae_path)
|
31 |
-
if sample_size:
|
32 |
-
vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size)
|
33 |
-
else:
|
34 |
-
vae = AutoencoderKLCausal3D.from_config(config)
|
35 |
-
|
36 |
-
vae_ckpt = Path(vae_path) / "pytorch_model.pt"
|
37 |
-
assert vae_ckpt.exists(), f"VAE checkpoint not found: {vae_ckpt}"
|
38 |
-
|
39 |
-
ckpt = torch.load(vae_ckpt, map_location=vae.device)
|
40 |
-
if "state_dict" in ckpt:
|
41 |
-
ckpt = ckpt["state_dict"]
|
42 |
-
if any(k.startswith("vae.") for k in ckpt.keys()):
|
43 |
-
ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")}
|
44 |
-
vae.load_state_dict(ckpt)
|
45 |
-
|
46 |
-
spatial_compression_ratio = vae.config.spatial_compression_ratio
|
47 |
-
time_compression_ratio = vae.config.time_compression_ratio
|
48 |
-
|
49 |
-
if vae_precision is not None:
|
50 |
-
vae = vae.to(dtype=PRECISION_TO_TYPE[vae_precision])
|
51 |
-
|
52 |
-
vae.requires_grad_(False)
|
53 |
-
|
54 |
-
if logger is not None:
|
55 |
-
logger.info(f"VAE to dtype: {vae.dtype}")
|
56 |
-
|
57 |
-
if device is not None:
|
58 |
-
vae = vae.to(device)
|
59 |
-
|
60 |
-
vae.eval()
|
61 |
-
|
62 |
-
return vae, vae_path, spatial_compression_ratio, time_compression_ratio
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
6 |
+
from ..constants import VAE_PATH, PRECISION_TO_TYPE
|
7 |
+
|
8 |
+
def load_vae(vae_type: str="884-16c-hy",
|
9 |
+
vae_precision: str=None,
|
10 |
+
sample_size: tuple=None,
|
11 |
+
vae_path: str=None,
|
12 |
+
logger=None,
|
13 |
+
device=None
|
14 |
+
):
|
15 |
+
"""the fucntion to load the 3D VAE model
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vae_type (str): the type of the 3D VAE model. Defaults to "884-16c-hy".
|
19 |
+
vae_precision (str, optional): the precision to load vae. Defaults to None.
|
20 |
+
sample_size (tuple, optional): the tiling size. Defaults to None.
|
21 |
+
vae_path (str, optional): the path to vae. Defaults to None.
|
22 |
+
logger (_type_, optional): logger. Defaults to None.
|
23 |
+
device (_type_, optional): device to load vae. Defaults to None.
|
24 |
+
"""
|
25 |
+
if vae_path is None:
|
26 |
+
vae_path = VAE_PATH[vae_type]
|
27 |
+
|
28 |
+
if logger is not None:
|
29 |
+
logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}")
|
30 |
+
config = AutoencoderKLCausal3D.load_config(vae_path)
|
31 |
+
if sample_size:
|
32 |
+
vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size)
|
33 |
+
else:
|
34 |
+
vae = AutoencoderKLCausal3D.from_config(config)
|
35 |
+
|
36 |
+
vae_ckpt = Path(vae_path) / "pytorch_model.pt"
|
37 |
+
assert vae_ckpt.exists(), f"VAE checkpoint not found: {vae_ckpt}"
|
38 |
+
|
39 |
+
ckpt = torch.load(vae_ckpt, map_location=vae.device)
|
40 |
+
if "state_dict" in ckpt:
|
41 |
+
ckpt = ckpt["state_dict"]
|
42 |
+
if any(k.startswith("vae.") for k in ckpt.keys()):
|
43 |
+
ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")}
|
44 |
+
vae.load_state_dict(ckpt)
|
45 |
+
|
46 |
+
spatial_compression_ratio = vae.config.spatial_compression_ratio
|
47 |
+
time_compression_ratio = vae.config.time_compression_ratio
|
48 |
+
|
49 |
+
if vae_precision is not None:
|
50 |
+
vae = vae.to(dtype=PRECISION_TO_TYPE[vae_precision])
|
51 |
+
|
52 |
+
vae.requires_grad_(False)
|
53 |
+
|
54 |
+
if logger is not None:
|
55 |
+
logger.info(f"VAE to dtype: {vae.dtype}")
|
56 |
+
|
57 |
+
if device is not None:
|
58 |
+
vae = vae.to(device)
|
59 |
+
|
60 |
+
vae.eval()
|
61 |
+
|
62 |
+
return vae, vae_path, spatial_compression_ratio, time_compression_ratio
|