Fabrice-TIERCELIN
commited on
" rather than '
Browse files- utils/collect_env.py +46 -46
utils/collect_env.py
CHANGED
@@ -13,7 +13,7 @@ import torch
|
|
13 |
def is_rocm_pytorch() -> bool:
|
14 |
"""Check whether the PyTorch is compiled on ROCm."""
|
15 |
is_rocm = False
|
16 |
-
if TORCH_VERSION !=
|
17 |
try:
|
18 |
from torch.utils.cpp_extension import ROCM_HOME
|
19 |
is_rocm = True if ((torch.version.hip is not None) and
|
@@ -26,7 +26,7 @@ TORCH_VERSION = torch.__version__
|
|
26 |
|
27 |
def get_build_config():
|
28 |
"""Obtain the build information of PyTorch or Parrots."""
|
29 |
-
if TORCH_VERSION ==
|
30 |
from parrots.config import get_build_info
|
31 |
return get_build_info()
|
32 |
else:
|
@@ -46,7 +46,7 @@ def is_cuda_available() -> bool:
|
|
46 |
return torch.cuda.is_available()
|
47 |
|
48 |
def _get_cuda_home():
|
49 |
-
if TORCH_VERSION ==
|
50 |
from parrots.utils.build_extension import CUDA_HOME
|
51 |
else:
|
52 |
if is_rocm_pytorch():
|
@@ -58,7 +58,7 @@ def _get_cuda_home():
|
|
58 |
|
59 |
|
60 |
def _get_musa_home():
|
61 |
-
return os.environ.get(
|
62 |
|
63 |
|
64 |
def collect_env():
|
@@ -84,77 +84,77 @@ def collect_env():
|
|
84 |
from distutils import errors
|
85 |
|
86 |
env_info = OrderedDict()
|
87 |
-
env_info[
|
88 |
-
env_info[
|
89 |
|
90 |
cuda_available = is_cuda_available()
|
91 |
musa_available = is_musa_available()
|
92 |
-
env_info[
|
93 |
-
env_info[
|
94 |
-
env_info[
|
95 |
|
96 |
if cuda_available:
|
97 |
devices = defaultdict(list)
|
98 |
for k in range(torch.cuda.device_count()):
|
99 |
devices[torch.cuda.get_device_name(k)].append(str(k))
|
100 |
for name, device_ids in devices.items():
|
101 |
-
env_info[
|
102 |
|
103 |
CUDA_HOME = _get_cuda_home()
|
104 |
-
env_info[
|
105 |
|
106 |
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
|
107 |
-
if CUDA_HOME ==
|
108 |
try:
|
109 |
-
nvcc = osp.join(CUDA_HOME,
|
110 |
nvcc = subprocess.check_output(
|
111 |
-
f
|
112 |
-
nvcc = nvcc.decode(
|
113 |
-
release = nvcc.rfind(
|
114 |
-
build = nvcc.rfind(
|
115 |
nvcc = nvcc[release:build].strip()
|
116 |
except subprocess.SubprocessError:
|
117 |
-
nvcc =
|
118 |
else:
|
119 |
try:
|
120 |
-
nvcc = osp.join(CUDA_HOME,
|
121 |
-
nvcc = subprocess.check_output(f
|
122 |
-
nvcc = nvcc.decode(
|
123 |
-
release = nvcc.rfind(
|
124 |
-
build = nvcc.rfind(
|
125 |
nvcc = nvcc[release:build].strip()
|
126 |
except subprocess.SubprocessError:
|
127 |
-
nvcc =
|
128 |
-
env_info[
|
129 |
elif musa_available:
|
130 |
devices = defaultdict(list)
|
131 |
for k in range(torch.musa.device_count()):
|
132 |
devices[torch.musa.get_device_name(k)].append(str(k))
|
133 |
for name, device_ids in devices.items():
|
134 |
-
env_info[
|
135 |
|
136 |
MUSA_HOME = _get_musa_home()
|
137 |
-
env_info[
|
138 |
|
139 |
if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
|
140 |
try:
|
141 |
-
mcc = osp.join(MUSA_HOME,
|
142 |
-
subprocess.check_output(f
|
143 |
except subprocess.SubprocessError:
|
144 |
-
mcc =
|
145 |
-
env_info[
|
146 |
try:
|
147 |
# Check C++ Compiler.
|
148 |
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
|
149 |
# indicating the compiler used, we use this to get the compiler name
|
150 |
import io
|
151 |
import sysconfig
|
152 |
-
cc = sysconfig.get_config_var(
|
153 |
if cc:
|
154 |
cc = osp.basename(cc.split()[0])
|
155 |
-
cc_info = subprocess.check_output(f
|
156 |
-
env_info[
|
157 |
-
|
158 |
else:
|
159 |
# on Windows, cl.exe is not in PATH. We need to find the path.
|
160 |
# distutils.ccompiler.new_compiler() returns a msvccompiler
|
@@ -165,38 +165,38 @@ def collect_env():
|
|
165 |
ccompiler = new_compiler()
|
166 |
ccompiler.initialize()
|
167 |
cc = subprocess.check_output(
|
168 |
-
f
|
169 |
encoding = os.device_encoding(
|
170 |
sys.stdout.fileno()) or locale.getpreferredencoding()
|
171 |
-
env_info[
|
172 |
-
env_info[
|
173 |
except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
|
174 |
-
env_info[
|
175 |
except io.UnsupportedOperation as e:
|
176 |
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr
|
177 |
# Refer to: https://github.com/open-mmlab/mmengine/issues/931
|
178 |
# TODO: find a solution to get compiler info in Windows JupyterLab,
|
179 |
# while preserving backward-compatibility in other systems.
|
180 |
-
env_info[
|
181 |
|
182 |
-
env_info[
|
183 |
-
env_info[
|
184 |
|
185 |
try:
|
186 |
import torchvision
|
187 |
-
env_info[
|
188 |
except ModuleNotFoundError:
|
189 |
pass
|
190 |
|
191 |
try:
|
192 |
import cv2
|
193 |
-
env_info[
|
194 |
except ImportError:
|
195 |
pass
|
196 |
|
197 |
|
198 |
return env_info
|
199 |
|
200 |
-
if __name__ ==
|
201 |
for name, val in collect_env().items():
|
202 |
-
print(f
|
|
|
13 |
def is_rocm_pytorch() -> bool:
|
14 |
"""Check whether the PyTorch is compiled on ROCm."""
|
15 |
is_rocm = False
|
16 |
+
if TORCH_VERSION != "parrots":
|
17 |
try:
|
18 |
from torch.utils.cpp_extension import ROCM_HOME
|
19 |
is_rocm = True if ((torch.version.hip is not None) and
|
|
|
26 |
|
27 |
def get_build_config():
|
28 |
"""Obtain the build information of PyTorch or Parrots."""
|
29 |
+
if TORCH_VERSION == "parrots":
|
30 |
from parrots.config import get_build_info
|
31 |
return get_build_info()
|
32 |
else:
|
|
|
46 |
return torch.cuda.is_available()
|
47 |
|
48 |
def _get_cuda_home():
|
49 |
+
if TORCH_VERSION == "parrots":
|
50 |
from parrots.utils.build_extension import CUDA_HOME
|
51 |
else:
|
52 |
if is_rocm_pytorch():
|
|
|
58 |
|
59 |
|
60 |
def _get_musa_home():
|
61 |
+
return os.environ.get("MUSA_HOME")
|
62 |
|
63 |
|
64 |
def collect_env():
|
|
|
84 |
from distutils import errors
|
85 |
|
86 |
env_info = OrderedDict()
|
87 |
+
env_info["sys.platform"] = sys.platform
|
88 |
+
env_info["Python"] = sys.version.replace("\n", "")
|
89 |
|
90 |
cuda_available = is_cuda_available()
|
91 |
musa_available = is_musa_available()
|
92 |
+
env_info["CUDA available"] = cuda_available
|
93 |
+
env_info["MUSA available"] = musa_available
|
94 |
+
env_info["numpy_random_seed"] = np.random.get_state()[1][0]
|
95 |
|
96 |
if cuda_available:
|
97 |
devices = defaultdict(list)
|
98 |
for k in range(torch.cuda.device_count()):
|
99 |
devices[torch.cuda.get_device_name(k)].append(str(k))
|
100 |
for name, device_ids in devices.items():
|
101 |
+
env_info["GPU " + ",".join(device_ids)] = name
|
102 |
|
103 |
CUDA_HOME = _get_cuda_home()
|
104 |
+
env_info["CUDA_HOME"] = CUDA_HOME
|
105 |
|
106 |
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
|
107 |
+
if CUDA_HOME == "/opt/rocm":
|
108 |
try:
|
109 |
+
nvcc = osp.join(CUDA_HOME, "hip/bin/hipcc")
|
110 |
nvcc = subprocess.check_output(
|
111 |
+
f"\"{nvcc}\" --version", shell=True)
|
112 |
+
nvcc = nvcc.decode("utf-8").strip()
|
113 |
+
release = nvcc.rfind("HIP version:")
|
114 |
+
build = nvcc.rfind("")
|
115 |
nvcc = nvcc[release:build].strip()
|
116 |
except subprocess.SubprocessError:
|
117 |
+
nvcc = "Not Available"
|
118 |
else:
|
119 |
try:
|
120 |
+
nvcc = osp.join(CUDA_HOME, "bin/nvcc")
|
121 |
+
nvcc = subprocess.check_output(f"\"{nvcc}\" -V", shell=True)
|
122 |
+
nvcc = nvcc.decode("utf-8").strip()
|
123 |
+
release = nvcc.rfind("Cuda compilation tools")
|
124 |
+
build = nvcc.rfind("Build ")
|
125 |
nvcc = nvcc[release:build].strip()
|
126 |
except subprocess.SubprocessError:
|
127 |
+
nvcc = "Not Available"
|
128 |
+
env_info["NVCC"] = nvcc
|
129 |
elif musa_available:
|
130 |
devices = defaultdict(list)
|
131 |
for k in range(torch.musa.device_count()):
|
132 |
devices[torch.musa.get_device_name(k)].append(str(k))
|
133 |
for name, device_ids in devices.items():
|
134 |
+
env_info["GPU " + ",".join(device_ids)] = name
|
135 |
|
136 |
MUSA_HOME = _get_musa_home()
|
137 |
+
env_info["MUSA_HOME"] = MUSA_HOME
|
138 |
|
139 |
if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
|
140 |
try:
|
141 |
+
mcc = osp.join(MUSA_HOME, "bin/mcc")
|
142 |
+
subprocess.check_output(f"\"{mcc}\" -v", shell=True)
|
143 |
except subprocess.SubprocessError:
|
144 |
+
mcc = "Not Available"
|
145 |
+
env_info["mcc"] = mcc
|
146 |
try:
|
147 |
# Check C++ Compiler.
|
148 |
# For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...',
|
149 |
# indicating the compiler used, we use this to get the compiler name
|
150 |
import io
|
151 |
import sysconfig
|
152 |
+
cc = sysconfig.get_config_var("CC")
|
153 |
if cc:
|
154 |
cc = osp.basename(cc.split()[0])
|
155 |
+
cc_info = subprocess.check_output(f"{cc} --version", shell=True)
|
156 |
+
env_info["GCC"] = cc_info.decode("utf-8").partition(
|
157 |
+
"\n")[0].strip()
|
158 |
else:
|
159 |
# on Windows, cl.exe is not in PATH. We need to find the path.
|
160 |
# distutils.ccompiler.new_compiler() returns a msvccompiler
|
|
|
165 |
ccompiler = new_compiler()
|
166 |
ccompiler.initialize()
|
167 |
cc = subprocess.check_output(
|
168 |
+
f"{ccompiler.cc}", stderr=subprocess.STDOUT, shell=True)
|
169 |
encoding = os.device_encoding(
|
170 |
sys.stdout.fileno()) or locale.getpreferredencoding()
|
171 |
+
env_info["MSVC"] = cc.decode(encoding).partition("\n")[0].strip()
|
172 |
+
env_info["GCC"] = "n/a"
|
173 |
except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
|
174 |
+
env_info["GCC"] = "n/a"
|
175 |
except io.UnsupportedOperation as e:
|
176 |
# JupyterLab on Windows changes sys.stdout, which has no `fileno` attr
|
177 |
# Refer to: https://github.com/open-mmlab/mmengine/issues/931
|
178 |
# TODO: find a solution to get compiler info in Windows JupyterLab,
|
179 |
# while preserving backward-compatibility in other systems.
|
180 |
+
env_info["MSVC"] = f"n/a, reason: {str(e)}"
|
181 |
|
182 |
+
env_info["PyTorch"] = torch.__version__
|
183 |
+
env_info["PyTorch compiling details"] = get_build_config()
|
184 |
|
185 |
try:
|
186 |
import torchvision
|
187 |
+
env_info["TorchVision"] = torchvision.__version__
|
188 |
except ModuleNotFoundError:
|
189 |
pass
|
190 |
|
191 |
try:
|
192 |
import cv2
|
193 |
+
env_info["OpenCV"] = cv2.__version__
|
194 |
except ImportError:
|
195 |
pass
|
196 |
|
197 |
|
198 |
return env_info
|
199 |
|
200 |
+
if __name__ == "__main__":
|
201 |
for name, val in collect_env().items():
|
202 |
+
print(f"{name}: {val}")
|