Spaces:
Running
Running
| import os | |
| import time | |
| from pathlib import Path | |
| from loguru import logger | |
| from datetime import datetime | |
| import gradio as gr | |
| import random | |
| from hyvideo.utils.file_utils import save_videos_grid | |
| from hyvideo.config import parse_args | |
| from hyvideo.inference import HunyuanVideoSampler | |
| from hyvideo.constants import NEGATIVE_PROMPT | |
| def initialize_model(model_path): | |
| args = parse_args() | |
| models_root_path = Path(model_path) | |
| if not models_root_path.exists(): | |
| raise ValueError(f"`models_root` not exists: {models_root_path}") | |
| hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(models_root_path, args=args) | |
| return hunyuan_video_sampler | |
| def generate_video( | |
| model, | |
| prompt, | |
| resolution, | |
| video_length, | |
| seed, | |
| num_inference_steps, | |
| guidance_scale, | |
| flow_shift, | |
| embedded_guidance_scale | |
| ): | |
| seed = None if seed == -1 else seed | |
| width, height = resolution.split("x") | |
| width, height = int(width), int(height) | |
| negative_prompt = "" # not applicable in the inference | |
| outputs = model.predict( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| video_length=video_length, | |
| seed=seed, | |
| negative_prompt=negative_prompt, | |
| infer_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_videos_per_prompt=1, | |
| flow_shift=flow_shift, | |
| batch_size=1, | |
| embedded_guidance_scale=embedded_guidance_scale | |
| ) | |
| samples = outputs['samples'] | |
| sample = samples[0].unsqueeze(0) | |
| save_path = os.path.join(os.getcwd(), "gradio_outputs") | |
| os.makedirs(save_path, exist_ok=True) | |
| time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S") | |
| video_path = f"{save_path}/{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4" | |
| save_videos_grid(sample, video_path, fps=24) | |
| logger.info(f'Sample saved to: {video_path}') | |
| return video_path | |
| def create_demo(model_path, save_path): | |
| model = initialize_model(model_path) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Hunyuan Video Generation") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", value="A cat walks on the grass, realistic style.") | |
| with gr.Row(): | |
| resolution = gr.Dropdown( | |
| choices=[ | |
| # 720p | |
| ("1280x720 (16:9, 720p)", "1280x720"), | |
| ("720x1280 (9:16, 720p)", "720x1280"), | |
| ("1104x832 (4:3, 720p)", "1104x832"), | |
| ("832x1104 (3:4, 720p)", "832x1104"), | |
| ("960x960 (1:1, 720p)", "960x960"), | |
| # 540p | |
| ("960x544 (16:9, 540p)", "960x544"), | |
| ("544x960 (9:16, 540p)", "544x960"), | |
| ("832x624 (4:3, 540p)", "832x624"), | |
| ("624x832 (3:4, 540p)", "624x832"), | |
| ("720x720 (1:1, 540p)", "720x720"), | |
| ], | |
| value="1280x720", | |
| label="Resolution" | |
| ) | |
| video_length = gr.Dropdown( | |
| label="Video Length", | |
| choices=[ | |
| ("2s(65f)", 65), | |
| ("5s(129f)", 129), | |
| ], | |
| value=129, | |
| ) | |
| num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps") | |
| show_advanced = gr.Checkbox(label="Show Advanced Options", value=False) | |
| with gr.Row(visible=False) as advanced_row: | |
| with gr.Column(): | |
| seed = gr.Number(value=-1, label="Seed (-1 for random)") | |
| guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale") | |
| flow_shift = gr.Slider(0.0, 10.0, value=7.0, step=0.1, label="Flow Shift") | |
| embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale") | |
| show_advanced.change(fn=lambda x: gr.Row(visible=x), inputs=[show_advanced], outputs=[advanced_row]) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| output = gr.Video(label="Generated Video") | |
| generate_btn.click( | |
| fn=lambda *inputs: generate_video(model, *inputs), | |
| inputs=[ | |
| prompt, | |
| resolution, | |
| video_length, | |
| seed, | |
| num_inference_steps, | |
| guidance_scale, | |
| flow_shift, | |
| embedded_guidance_scale | |
| ], | |
| outputs=output | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| server_name = os.getenv("SERVER_NAME", "0.0.0.0") | |
| server_port = int(os.getenv("SERVER_PORT", "8081")) | |
| args = parse_args() | |
| print(args) | |
| demo = create_demo(args.model_base, args.save_path) | |
| demo.launch(server_name=server_name, server_port=server_port) |