Spaces:
Running
Running
Display resolution and save preferences
Browse files
app.py
CHANGED
@@ -108,12 +108,9 @@ stream = AsyncStream()
|
|
108 |
outputs_folder = './outputs/'
|
109 |
os.makedirs(outputs_folder, exist_ok=True)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
if generation_mode == "video" and input_video is None:
|
115 |
-
raise gr.Error("Please provide a video to extend.")
|
116 |
-
return [gr.update(interactive=True)]
|
117 |
|
118 |
@spaces.GPU()
|
119 |
@torch.no_grad()
|
@@ -306,7 +303,7 @@ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
|
|
306 |
return False
|
307 |
|
308 |
@torch.no_grad()
|
309 |
-
def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
310 |
def encode_prompt(prompt, n_prompt):
|
311 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
312 |
|
@@ -356,7 +353,7 @@ def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_win
|
|
356 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
357 |
|
358 |
H, W, C = input_image.shape
|
359 |
-
height, width = find_nearest_bucket(H, W, resolution=
|
360 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
361 |
|
362 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
@@ -399,23 +396,27 @@ def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_win
|
|
399 |
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
400 |
total_generated_latent_frames = 1
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
stream.
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
419 |
|
420 |
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
421 |
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
@@ -495,13 +496,14 @@ def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_win
|
|
495 |
if not high_vram:
|
496 |
unload_complete_models()
|
497 |
|
498 |
-
|
|
|
499 |
|
500 |
-
|
501 |
|
502 |
-
|
503 |
|
504 |
-
|
505 |
except:
|
506 |
traceback.print_exc()
|
507 |
|
@@ -513,8 +515,8 @@ def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_win
|
|
513 |
stream.output_queue.push(('end', None))
|
514 |
return
|
515 |
|
516 |
-
def get_duration(input_image, prompt, generation_mode, n_prompt, randomize_seed, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
517 |
-
return total_second_length * 60 * (0.7 if use_teacache else 1.3)
|
518 |
|
519 |
|
520 |
@spaces.GPU(duration=get_duration)
|
@@ -523,6 +525,7 @@ def process(input_image, prompt,
|
|
523 |
n_prompt="",
|
524 |
randomize_seed=True,
|
525 |
seed=31337,
|
|
|
526 |
total_second_length=5,
|
527 |
latent_window_size=9,
|
528 |
steps=25,
|
@@ -530,14 +533,16 @@ def process(input_image, prompt,
|
|
530 |
gs=10.0,
|
531 |
rs=0.0,
|
532 |
gpu_memory_preservation=6,
|
|
|
533 |
use_teacache=False,
|
534 |
mp4_crf=16
|
535 |
):
|
536 |
-
global stream
|
537 |
|
538 |
if torch.cuda.device_count() == 0:
|
539 |
gr.Warning('Set this space to GPU config to make it work.')
|
540 |
-
|
|
|
541 |
|
542 |
if randomize_seed:
|
543 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
@@ -554,7 +559,7 @@ def process(input_image, prompt,
|
|
554 |
|
555 |
stream = AsyncStream()
|
556 |
|
557 |
-
async_run(worker, input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
558 |
|
559 |
output_filename = None
|
560 |
|
@@ -570,12 +575,13 @@ def process(input_image, prompt,
|
|
570 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
571 |
|
572 |
if flag == 'end':
|
573 |
-
|
|
|
574 |
|
575 |
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
576 |
@spaces.GPU()
|
577 |
@torch.no_grad()
|
578 |
-
def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
579 |
def encode_prompt(prompt, n_prompt):
|
580 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
581 |
|
@@ -618,13 +624,8 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
618 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
619 |
|
620 |
# 20250506 pftq: Encode video
|
621 |
-
#H, W = 640, 640 # Default resolution, will be adjusted
|
622 |
-
#height, width = find_nearest_bucket(H, W, resolution=640)
|
623 |
-
#start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
|
624 |
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
625 |
|
626 |
-
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
627 |
-
|
628 |
# CLIP Vision
|
629 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
630 |
|
@@ -640,23 +641,27 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
640 |
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
641 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
642 |
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
stream.
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
|
|
|
|
|
|
|
|
660 |
|
661 |
for idx in range(batch):
|
662 |
if batch > 1:
|
@@ -677,10 +682,6 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
677 |
history_pixels = None
|
678 |
previous_video = None
|
679 |
|
680 |
-
# 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
|
681 |
-
#history_pixels = input_video_pixels
|
682 |
-
#save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
|
683 |
-
|
684 |
for section_index in range(total_latent_sections):
|
685 |
if stream.input_queue.top() == 'end':
|
686 |
stream.output_queue.push(('end', None))
|
@@ -735,12 +736,14 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
735 |
clean_latents_4x = splits[split_idx]
|
736 |
split_idx = 1
|
737 |
if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
738 |
-
|
|
|
739 |
|
740 |
if num_2x_frames > 0 and split_idx < len(splits):
|
741 |
clean_latents_2x = splits[split_idx]
|
742 |
if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
743 |
-
|
|
|
744 |
split_idx += 1
|
745 |
elif clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
746 |
clean_latents_2x = clean_latents_4x
|
@@ -804,27 +807,28 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
804 |
if not high_vram:
|
805 |
unload_complete_models()
|
806 |
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
|
|
828 |
|
829 |
seed = (seed + 1) % np.iinfo(np.int32).max
|
830 |
|
@@ -839,17 +843,18 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
839 |
stream.output_queue.push(('end', None))
|
840 |
return
|
841 |
|
842 |
-
def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
843 |
-
return total_second_length * 60 * (0.7 if use_teacache else 2)
|
844 |
|
845 |
# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode
|
846 |
@spaces.GPU(duration=get_duration_video)
|
847 |
-
def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
848 |
global stream, high_vram
|
849 |
|
850 |
if torch.cuda.device_count() == 0:
|
851 |
gr.Warning('Set this space to GPU config to make it work.')
|
852 |
-
|
|
|
853 |
|
854 |
if randomize_seed:
|
855 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
@@ -877,7 +882,7 @@ def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, re
|
|
877 |
stream = AsyncStream()
|
878 |
|
879 |
# 20250506 pftq: Pass num_clean_frames, vae_batch, etc
|
880 |
-
async_run(worker_video, input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
|
881 |
|
882 |
output_filename = None
|
883 |
|
@@ -894,7 +899,8 @@ def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, re
|
|
894 |
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
|
895 |
|
896 |
if flag == 'end':
|
897 |
-
|
|
|
898 |
|
899 |
def end_process():
|
900 |
stream.input_queue.push('end')
|
@@ -934,8 +940,23 @@ title_html = """
|
|
934 |
<p>This space is ready to work on ZeroGPU and GPU and has been tested successfully on ZeroGPU. Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack/discussions/new">message in discussion</a> if you encounter issues.</p>
|
935 |
"""
|
936 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
937 |
css = make_progress_bar_css()
|
938 |
-
block = gr.Blocks(css=css).queue()
|
939 |
with block:
|
940 |
if torch.cuda.device_count() == 0:
|
941 |
with gr.Row():
|
@@ -946,12 +967,13 @@ with block:
|
|
946 |
</big></big></big></p>
|
947 |
""")
|
948 |
gr.HTML(title_html)
|
|
|
949 |
with gr.Row():
|
950 |
with gr.Column():
|
951 |
-
generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], label="Generation mode", value = "image")
|
952 |
-
text_to_video_hint = gr.HTML("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time."
|
953 |
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
954 |
-
input_video = gr.Video(sources='upload', label="Input Video", height=320
|
955 |
timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
|
956 |
prompt_number = gr.Slider(label="Timed prompt number", minimum=0, maximum=1000, value=0, step=1, info='Prompts will automatically appear')
|
957 |
|
@@ -967,23 +989,29 @@ with block:
|
|
967 |
|
968 |
with gr.Row():
|
969 |
start_button = gr.Button(value="🎥 Generate", variant="primary")
|
970 |
-
start_button_video = gr.Button(value="🎥 Generate", variant="primary"
|
971 |
-
end_button = gr.Button(value="End Generation", variant="stop", interactive=False
|
972 |
|
973 |
with gr.Accordion("Advanced settings", open=False):
|
974 |
-
|
975 |
-
|
976 |
-
no_resize = gr.Checkbox(label='Force Original Video Resolution (no Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).', visible=False)
|
977 |
|
978 |
-
n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
979 |
-
randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
|
980 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
|
981 |
|
982 |
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost. Should not change.')
|
983 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG. Changing this value is not recommended.')
|
984 |
-
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.', visible=False)
|
985 |
|
986 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
987 |
|
988 |
# 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
|
989 |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time. Should not change.')
|
@@ -992,7 +1020,7 @@ with block:
|
|
992 |
|
993 |
|
994 |
# 20250506 pftq: Renamed slider to Number of Context Frames and updated description
|
995 |
-
num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 to avoid memory issues or to give more weight to the prompt."
|
996 |
|
997 |
default_vae = 32
|
998 |
if high_vram:
|
@@ -1000,12 +1028,16 @@ with block:
|
|
1000 |
elif free_mem_gb>=20:
|
1001 |
default_vae = 64
|
1002 |
|
1003 |
-
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion."
|
1004 |
|
1005 |
|
1006 |
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
1007 |
|
1008 |
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
|
|
|
|
|
|
|
|
1009 |
|
1010 |
with gr.Column():
|
1011 |
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
@@ -1014,8 +1046,28 @@ with block:
|
|
1014 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1015 |
|
1016 |
# 20250506 pftq: Updated inputs to include num_clean_frames
|
1017 |
-
ips = [input_image, final_prompt, generation_mode, n_prompt, randomize_seed, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
|
1018 |
-
ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1019 |
|
1020 |
prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
|
1021 |
timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
|
@@ -1027,32 +1079,127 @@ with block:
|
|
1027 |
], outputs = [end_button], queue = False, show_progress = False).success(fn=process_video, inputs=ips_video, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button])
|
1028 |
end_button.click(fn=end_process)
|
1029 |
|
1030 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1031 |
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1032 |
[
|
1033 |
"./img_examples/Example1.png", # input_image
|
1034 |
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1035 |
"image", # generation_mode
|
1036 |
-
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
1037 |
True, # randomize_seed
|
1038 |
42, # seed
|
|
|
1039 |
1, # total_second_length
|
1040 |
9, # latent_window_size
|
1041 |
-
|
1042 |
1.0, # cfg
|
1043 |
10.0, # gs
|
1044 |
0.0, # rs
|
1045 |
6, # gpu_memory_preservation
|
|
|
1046 |
False, # use_teacache
|
1047 |
16 # mp4_crf
|
1048 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1049 |
[
|
1050 |
"./img_examples/Example1.png", # input_image
|
1051 |
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1052 |
"image", # generation_mode
|
1053 |
-
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
1054 |
True, # randomize_seed
|
1055 |
42, # seed
|
|
|
1056 |
1, # total_second_length
|
1057 |
9, # latent_window_size
|
1058 |
25, # steps
|
@@ -1060,7 +1207,8 @@ with block:
|
|
1060 |
10.0, # gs
|
1061 |
0.0, # rs
|
1062 |
6, # gpu_memory_preservation
|
1063 |
-
|
|
|
1064 |
16 # mp4_crf
|
1065 |
]
|
1066 |
],
|
@@ -1068,7 +1216,7 @@ with block:
|
|
1068 |
fn = process,
|
1069 |
inputs = ips,
|
1070 |
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
1071 |
-
cache_examples =
|
1072 |
)
|
1073 |
|
1074 |
gr.Examples(
|
@@ -1080,7 +1228,7 @@ with block:
|
|
1080 |
True, # randomize_seed
|
1081 |
42, # seed
|
1082 |
1, # batch
|
1083 |
-
|
1084 |
1, # total_second_length
|
1085 |
9, # latent_window_size
|
1086 |
25, # steps
|
@@ -1088,37 +1236,52 @@ with block:
|
|
1088 |
10.0, # gs
|
1089 |
0.0, # rs
|
1090 |
6, # gpu_memory_preservation
|
|
|
1091 |
False, # use_teacache
|
1092 |
False, # no_resize
|
1093 |
16, # mp4_crf
|
1094 |
5, # num_clean_frames
|
1095 |
default_vae
|
1096 |
-
]
|
1097 |
],
|
1098 |
run_on_click = True,
|
1099 |
fn = process_video,
|
1100 |
inputs = ips_video,
|
1101 |
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button],
|
1102 |
-
cache_examples =
|
1103 |
)
|
1104 |
-
|
1105 |
-
gr.Markdown('''
|
1106 |
-
# Guide
|
1107 |
-
To make all your generated scenes consistent, you can then apply a face swap on the main character.
|
1108 |
-
''')
|
1109 |
|
1110 |
def handle_generation_mode_change(generation_mode_data):
|
1111 |
if generation_mode_data == "text":
|
1112 |
-
return [gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)
|
1113 |
elif generation_mode_data == "image":
|
1114 |
-
return [gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)
|
1115 |
elif generation_mode_data == "video":
|
1116 |
-
return [gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)
|
1117 |
|
|
|
1118 |
generation_mode.change(
|
1119 |
fn=handle_generation_mode_change,
|
1120 |
inputs=[generation_mode],
|
1121 |
-
outputs=[text_to_video_hint, input_image, input_video, start_button, start_button_video, no_resize, batch,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1122 |
)
|
1123 |
|
1124 |
block.launch(mcp_server=True, ssr_mode=False)
|
|
|
108 |
outputs_folder = './outputs/'
|
109 |
os.makedirs(outputs_folder, exist_ok=True)
|
110 |
|
111 |
+
default_local_storage = {
|
112 |
+
"generation-mode": "image",
|
113 |
+
}
|
|
|
|
|
|
|
114 |
|
115 |
@spaces.GPU()
|
116 |
@torch.no_grad()
|
|
|
303 |
return False
|
304 |
|
305 |
@torch.no_grad()
|
306 |
+
def worker(input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
|
307 |
def encode_prompt(prompt, n_prompt):
|
308 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
309 |
|
|
|
353 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
354 |
|
355 |
H, W, C = input_image.shape
|
356 |
+
height, width = find_nearest_bucket(H, W, resolution=resolution)
|
357 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
358 |
|
359 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
|
|
396 |
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
397 |
total_generated_latent_frames = 1
|
398 |
|
399 |
+
if enable_preview:
|
400 |
+
def callback(d):
|
401 |
+
preview = d['denoised']
|
402 |
+
preview = vae_decode_fake(preview)
|
403 |
+
|
404 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
405 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
406 |
+
|
407 |
+
if stream.input_queue.top() == 'end':
|
408 |
+
stream.output_queue.push(('end', None))
|
409 |
+
raise KeyboardInterrupt('User ends the task.')
|
410 |
+
|
411 |
+
current_step = d['i'] + 1
|
412 |
+
percentage = int(100.0 * current_step / steps)
|
413 |
+
hint = f'Sampling {current_step}/{steps}'
|
414 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30), Resolution: {height}px * {width}px. The video is being extended now ...'
|
415 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
416 |
+
return
|
417 |
+
else:
|
418 |
+
def callback(d):
|
419 |
+
return
|
420 |
|
421 |
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
422 |
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
|
|
496 |
if not high_vram:
|
497 |
unload_complete_models()
|
498 |
|
499 |
+
if enable_preview or section_index == total_latent_sections - 1:
|
500 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
501 |
|
502 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
503 |
|
504 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
505 |
|
506 |
+
stream.output_queue.push(('file', output_filename))
|
507 |
except:
|
508 |
traceback.print_exc()
|
509 |
|
|
|
515 |
stream.output_queue.push(('end', None))
|
516 |
return
|
517 |
|
518 |
+
def get_duration(input_image, prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
|
519 |
+
return total_second_length * 60 * (0.7 if use_teacache else 1.3) * (2**((resolution - 640) / 640)) * (1 + ((steps - 25) / 100))
|
520 |
|
521 |
|
522 |
@spaces.GPU(duration=get_duration)
|
|
|
525 |
n_prompt="",
|
526 |
randomize_seed=True,
|
527 |
seed=31337,
|
528 |
+
resolution=640,
|
529 |
total_second_length=5,
|
530 |
latent_window_size=9,
|
531 |
steps=25,
|
|
|
533 |
gs=10.0,
|
534 |
rs=0.0,
|
535 |
gpu_memory_preservation=6,
|
536 |
+
enable_preview=True,
|
537 |
use_teacache=False,
|
538 |
mp4_crf=16
|
539 |
):
|
540 |
+
global stream, input_image_debug_value, prompt_debug_value, total_second_length_debug_value
|
541 |
|
542 |
if torch.cuda.device_count() == 0:
|
543 |
gr.Warning('Set this space to GPU config to make it work.')
|
544 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
545 |
+
return
|
546 |
|
547 |
if randomize_seed:
|
548 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
|
|
559 |
|
560 |
stream = AsyncStream()
|
561 |
|
562 |
+
async_run(worker, input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf)
|
563 |
|
564 |
output_filename = None
|
565 |
|
|
|
575 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
576 |
|
577 |
if flag == 'end':
|
578 |
+
yield output_filename, gr.update(visible=False), gr.update(), 'To make all your generated scenes consistent, you can then apply a face swap on the main character.', gr.update(interactive=True), gr.update(interactive=False)
|
579 |
+
break
|
580 |
|
581 |
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
582 |
@spaces.GPU()
|
583 |
@torch.no_grad()
|
584 |
+
def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
585 |
def encode_prompt(prompt, n_prompt):
|
586 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
587 |
|
|
|
624 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
625 |
|
626 |
# 20250506 pftq: Encode video
|
|
|
|
|
|
|
627 |
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
628 |
|
|
|
|
|
629 |
# CLIP Vision
|
630 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
631 |
|
|
|
641 |
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
642 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
643 |
|
644 |
+
if enable_preview:
|
645 |
+
def callback(d):
|
646 |
+
preview = d['denoised']
|
647 |
+
preview = vae_decode_fake(preview)
|
648 |
+
|
649 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
650 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
651 |
+
|
652 |
+
if stream.input_queue.top() == 'end':
|
653 |
+
stream.output_queue.push(('end', None))
|
654 |
+
raise KeyboardInterrupt('User ends the task.')
|
655 |
+
|
656 |
+
current_step = d['i'] + 1
|
657 |
+
percentage = int(100.0 * current_step / steps)
|
658 |
+
hint = f'Sampling {current_step}/{steps}'
|
659 |
+
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Resolution: {height}px * {width}px, Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...'
|
660 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
661 |
+
return
|
662 |
+
else:
|
663 |
+
def callback(d):
|
664 |
+
return
|
665 |
|
666 |
for idx in range(batch):
|
667 |
if batch > 1:
|
|
|
682 |
history_pixels = None
|
683 |
previous_video = None
|
684 |
|
|
|
|
|
|
|
|
|
685 |
for section_index in range(total_latent_sections):
|
686 |
if stream.input_queue.top() == 'end':
|
687 |
stream.output_queue.push(('end', None))
|
|
|
736 |
clean_latents_4x = splits[split_idx]
|
737 |
split_idx = 1
|
738 |
if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
739 |
+
print("Edge case for <=1 sec videos 4x")
|
740 |
+
clean_latents_4x = clean_latents_4x.expand(-1, -1, 2, -1, -1)
|
741 |
|
742 |
if num_2x_frames > 0 and split_idx < len(splits):
|
743 |
clean_latents_2x = splits[split_idx]
|
744 |
if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
745 |
+
print("Edge case for <=1 sec videos 2x")
|
746 |
+
clean_latents_2x = clean_latents_2x.expand(-1, -1, 2, -1, -1)
|
747 |
split_idx += 1
|
748 |
elif clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
749 |
clean_latents_2x = clean_latents_4x
|
|
|
807 |
if not high_vram:
|
808 |
unload_complete_models()
|
809 |
|
810 |
+
if enable_preview or section_index == total_latent_sections - 1:
|
811 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
812 |
+
|
813 |
+
# 20250506 pftq: Use input video FPS for output
|
814 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
|
815 |
+
print(f"Latest video saved: {output_filename}")
|
816 |
+
# 20250508 pftq: Save prompt to mp4 metadata comments
|
817 |
+
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompts} | Negative Prompt: {n_prompt}");
|
818 |
+
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
|
819 |
+
|
820 |
+
# 20250506 pftq: Clean up previous partial files
|
821 |
+
if previous_video is not None and os.path.exists(previous_video):
|
822 |
+
try:
|
823 |
+
os.remove(previous_video)
|
824 |
+
print(f"Previous partial video deleted: {previous_video}")
|
825 |
+
except Exception as e:
|
826 |
+
print(f"Error deleting previous partial video {previous_video}: {e}")
|
827 |
+
previous_video = output_filename
|
828 |
+
|
829 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
830 |
+
|
831 |
+
stream.output_queue.push(('file', output_filename))
|
832 |
|
833 |
seed = (seed + 1) % np.iinfo(np.int32).max
|
834 |
|
|
|
843 |
stream.output_queue.push(('end', None))
|
844 |
return
|
845 |
|
846 |
+
def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
847 |
+
return total_second_length * 60 * (0.7 if use_teacache else 2) * (2**((resolution - 640) / 640)) * (1 + ((steps - 25) / 100))
|
848 |
|
849 |
# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode
|
850 |
@spaces.GPU(duration=get_duration_video)
|
851 |
+
def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
852 |
global stream, high_vram
|
853 |
|
854 |
if torch.cuda.device_count() == 0:
|
855 |
gr.Warning('Set this space to GPU config to make it work.')
|
856 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
857 |
+
return
|
858 |
|
859 |
if randomize_seed:
|
860 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
|
|
882 |
stream = AsyncStream()
|
883 |
|
884 |
# 20250506 pftq: Pass num_clean_frames, vae_batch, etc
|
885 |
+
async_run(worker_video, input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
|
886 |
|
887 |
output_filename = None
|
888 |
|
|
|
899 |
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
|
900 |
|
901 |
if flag == 'end':
|
902 |
+
yield output_filename, gr.update(visible=False), desc+' Video complete. To make all your generated scenes consistent, you can then apply a face swap on the main character.', '', gr.update(interactive=True), gr.update(interactive=False)
|
903 |
+
break
|
904 |
|
905 |
def end_process():
|
906 |
stream.input_queue.push('end')
|
|
|
940 |
<p>This space is ready to work on ZeroGPU and GPU and has been tested successfully on ZeroGPU. Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack/discussions/new">message in discussion</a> if you encounter issues.</p>
|
941 |
"""
|
942 |
|
943 |
+
js = """
|
944 |
+
function createGradioAnimation() {
|
945 |
+
window.addEventListener("beforeunload", function (e) {
|
946 |
+
if (document.getElementById('end-button') && !document.getElementById('end-button').disabled) {
|
947 |
+
var confirmationMessage = 'A process is still running. '
|
948 |
+
+ 'If you leave before saving, your changes will be lost.';
|
949 |
+
|
950 |
+
(e || window.event).returnValue = confirmationMessage;
|
951 |
+
}
|
952 |
+
return confirmationMessage;
|
953 |
+
});
|
954 |
+
return 'Animation created';
|
955 |
+
}
|
956 |
+
"""
|
957 |
+
|
958 |
css = make_progress_bar_css()
|
959 |
+
block = gr.Blocks(css=css, js=js).queue()
|
960 |
with block:
|
961 |
if torch.cuda.device_count() == 0:
|
962 |
with gr.Row():
|
|
|
967 |
</big></big></big></p>
|
968 |
""")
|
969 |
gr.HTML(title_html)
|
970 |
+
local_storage = gr.BrowserState(default_local_storage)
|
971 |
with gr.Row():
|
972 |
with gr.Column():
|
973 |
+
generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
|
974 |
+
text_to_video_hint = gr.HTML("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
|
975 |
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
976 |
+
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
977 |
timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
|
978 |
prompt_number = gr.Slider(label="Timed prompt number", minimum=0, maximum=1000, value=0, step=1, info='Prompts will automatically appear')
|
979 |
|
|
|
989 |
|
990 |
with gr.Row():
|
991 |
start_button = gr.Button(value="🎥 Generate", variant="primary")
|
992 |
+
start_button_video = gr.Button(value="🎥 Generate", variant="primary")
|
993 |
+
end_button = gr.Button(elem_id="end-button", value="End Generation", variant="stop", interactive=False)
|
994 |
|
995 |
with gr.Accordion("Advanced settings", open=False):
|
996 |
+
enable_preview = gr.Checkbox(label='Enable preview', value=True, info='Display a preview around each second generated but it costs 2 sec. for each second generated.')
|
997 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
|
|
|
998 |
|
999 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, impossible contortion, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
|
|
|
|
1000 |
|
1001 |
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost. Should not change.')
|
1002 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG. Changing this value is not recommended.')
|
|
|
1003 |
|
1004 |
+
with gr.Row():
|
1005 |
+
no_resize = gr.Checkbox(label='Force Original Video Resolution (no Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
|
1006 |
+
resolution = gr.Dropdown([
|
1007 |
+
640,
|
1008 |
+
672,
|
1009 |
+
704,
|
1010 |
+
768,
|
1011 |
+
832,
|
1012 |
+
864,
|
1013 |
+
960
|
1014 |
+
], value=640, label="Resolution (max width or height)")
|
1015 |
|
1016 |
# 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
|
1017 |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time. Should not change.')
|
|
|
1020 |
|
1021 |
|
1022 |
# 20250506 pftq: Renamed slider to Number of Context Frames and updated description
|
1023 |
+
num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 to avoid memory issues or to give more weight to the prompt.")
|
1024 |
|
1025 |
default_vae = 32
|
1026 |
if high_vram:
|
|
|
1028 |
elif free_mem_gb>=20:
|
1029 |
default_vae = 64
|
1030 |
|
1031 |
+
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.")
|
1032 |
|
1033 |
|
1034 |
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
1035 |
|
1036 |
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
1037 |
+
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
|
1038 |
+
with gr.Row():
|
1039 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
|
1040 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
|
1041 |
|
1042 |
with gr.Column():
|
1043 |
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
|
|
1046 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1047 |
|
1048 |
# 20250506 pftq: Updated inputs to include num_clean_frames
|
1049 |
+
ips = [input_image, final_prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf]
|
1050 |
+
ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
1051 |
+
|
1052 |
+
def save_preferences(preferences, value):
|
1053 |
+
preferences["generation-mode"] = value
|
1054 |
+
return preferences
|
1055 |
+
|
1056 |
+
def load_preferences(saved_prefs):
|
1057 |
+
saved_prefs = init_preferences(saved_prefs)
|
1058 |
+
return saved_prefs["generation-mode"]
|
1059 |
+
|
1060 |
+
def init_preferences(saved_prefs):
|
1061 |
+
if saved_prefs is None:
|
1062 |
+
saved_prefs = default_local_storage
|
1063 |
+
return saved_prefs
|
1064 |
+
|
1065 |
+
def check_parameters(generation_mode, input_image, input_video):
|
1066 |
+
if generation_mode == "image" and input_image is None:
|
1067 |
+
raise gr.Error("Please provide an image to extend.")
|
1068 |
+
if generation_mode == "video" and input_video is None:
|
1069 |
+
raise gr.Error("Please provide a video to extend.")
|
1070 |
+
return gr.update(interactive=True)
|
1071 |
|
1072 |
prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
|
1073 |
timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
|
|
|
1079 |
], outputs = [end_button], queue = False, show_progress = False).success(fn=process_video, inputs=ips_video, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button])
|
1080 |
end_button.click(fn=end_process)
|
1081 |
|
1082 |
+
generation_mode.change(fn = save_preferences, inputs = [
|
1083 |
+
local_storage,
|
1084 |
+
generation_mode,
|
1085 |
+
], outputs = [
|
1086 |
+
local_storage
|
1087 |
+
])
|
1088 |
+
|
1089 |
+
with gr.Row(elem_id="image_examples", visible=False):
|
1090 |
+
gr.Examples(
|
1091 |
examples = [
|
1092 |
+
[
|
1093 |
+
"./img_examples/Example1.png", # input_image
|
1094 |
+
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1095 |
+
"image", # generation_mode
|
1096 |
+
"Missing arm, unrealistic position, impossible contortion, blurred, blurry", # n_prompt
|
1097 |
+
True, # randomize_seed
|
1098 |
+
42, # seed
|
1099 |
+
672, # resolution
|
1100 |
+
1, # total_second_length
|
1101 |
+
9, # latent_window_size
|
1102 |
+
50, # steps
|
1103 |
+
1.0, # cfg
|
1104 |
+
10.0, # gs
|
1105 |
+
0.0, # rs
|
1106 |
+
6, # gpu_memory_preservation
|
1107 |
+
False, # enable_preview
|
1108 |
+
False, # use_teacache
|
1109 |
+
16 # mp4_crf
|
1110 |
+
],
|
1111 |
[
|
1112 |
"./img_examples/Example1.png", # input_image
|
1113 |
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1114 |
"image", # generation_mode
|
1115 |
+
"Missing arm, unrealistic position, impossible contortion, blurred, blurry", # n_prompt
|
1116 |
True, # randomize_seed
|
1117 |
42, # seed
|
1118 |
+
672, # resolution
|
1119 |
1, # total_second_length
|
1120 |
9, # latent_window_size
|
1121 |
+
35, # steps
|
1122 |
1.0, # cfg
|
1123 |
10.0, # gs
|
1124 |
0.0, # rs
|
1125 |
6, # gpu_memory_preservation
|
1126 |
+
False, # enable_preview
|
1127 |
False, # use_teacache
|
1128 |
16 # mp4_crf
|
1129 |
],
|
1130 |
+
],
|
1131 |
+
run_on_click = True,
|
1132 |
+
fn = process,
|
1133 |
+
inputs = ips,
|
1134 |
+
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
1135 |
+
cache_examples = torch.cuda.device_count() > 0,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
with gr.Row(elem_id="video_examples", visible=False):
|
1139 |
+
gr.Examples(
|
1140 |
+
examples = [
|
1141 |
+
[
|
1142 |
+
"./img_examples/Example1.mp4", # input_video
|
1143 |
+
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1144 |
+
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
1145 |
+
True, # randomize_seed
|
1146 |
+
42, # seed
|
1147 |
+
1, # batch
|
1148 |
+
672, # resolution
|
1149 |
+
1, # total_second_length
|
1150 |
+
9, # latent_window_size
|
1151 |
+
50, # steps
|
1152 |
+
1.0, # cfg
|
1153 |
+
10.0, # gs
|
1154 |
+
0.0, # rs
|
1155 |
+
6, # gpu_memory_preservation
|
1156 |
+
False, # enable_preview
|
1157 |
+
False, # use_teacache
|
1158 |
+
False, # no_resize
|
1159 |
+
16, # mp4_crf
|
1160 |
+
5, # num_clean_frames
|
1161 |
+
default_vae
|
1162 |
+
],
|
1163 |
+
[
|
1164 |
+
"./img_examples/Example1.mp4", # input_video
|
1165 |
+
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1166 |
+
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
1167 |
+
True, # randomize_seed
|
1168 |
+
42, # seed
|
1169 |
+
1, # batch
|
1170 |
+
672, # resolution
|
1171 |
+
1, # total_second_length
|
1172 |
+
9, # latent_window_size
|
1173 |
+
35, # steps
|
1174 |
+
1.0, # cfg
|
1175 |
+
10.0, # gs
|
1176 |
+
0.0, # rs
|
1177 |
+
6, # gpu_memory_preservation
|
1178 |
+
False, # enable_preview
|
1179 |
+
False, # use_teacache
|
1180 |
+
False, # no_resize
|
1181 |
+
16, # mp4_crf
|
1182 |
+
5, # num_clean_frames
|
1183 |
+
default_vae
|
1184 |
+
],
|
1185 |
+
],
|
1186 |
+
run_on_click = True,
|
1187 |
+
fn = process_video,
|
1188 |
+
inputs = ips_video,
|
1189 |
+
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button],
|
1190 |
+
cache_examples = torch.cuda.device_count() > 0,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
gr.Examples(
|
1194 |
+
examples = [
|
1195 |
[
|
1196 |
"./img_examples/Example1.png", # input_image
|
1197 |
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1198 |
"image", # generation_mode
|
1199 |
+
"Missing arm, unrealistic position, impossible contortion, blurred, blurry", # n_prompt
|
1200 |
True, # randomize_seed
|
1201 |
42, # seed
|
1202 |
+
672, # resolution
|
1203 |
1, # total_second_length
|
1204 |
9, # latent_window_size
|
1205 |
25, # steps
|
|
|
1207 |
10.0, # gs
|
1208 |
0.0, # rs
|
1209 |
6, # gpu_memory_preservation
|
1210 |
+
False, # enable_preview
|
1211 |
+
False, # use_teacache
|
1212 |
16 # mp4_crf
|
1213 |
]
|
1214 |
],
|
|
|
1216 |
fn = process,
|
1217 |
inputs = ips,
|
1218 |
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
1219 |
+
cache_examples = False,
|
1220 |
)
|
1221 |
|
1222 |
gr.Examples(
|
|
|
1228 |
True, # randomize_seed
|
1229 |
42, # seed
|
1230 |
1, # batch
|
1231 |
+
672, # resolution
|
1232 |
1, # total_second_length
|
1233 |
9, # latent_window_size
|
1234 |
25, # steps
|
|
|
1236 |
10.0, # gs
|
1237 |
0.0, # rs
|
1238 |
6, # gpu_memory_preservation
|
1239 |
+
False, # enable_preview
|
1240 |
False, # use_teacache
|
1241 |
False, # no_resize
|
1242 |
16, # mp4_crf
|
1243 |
5, # num_clean_frames
|
1244 |
default_vae
|
1245 |
+
]
|
1246 |
],
|
1247 |
run_on_click = True,
|
1248 |
fn = process_video,
|
1249 |
inputs = ips_video,
|
1250 |
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button],
|
1251 |
+
cache_examples = False,
|
1252 |
)
|
|
|
|
|
|
|
|
|
|
|
1253 |
|
1254 |
def handle_generation_mode_change(generation_mode_data):
|
1255 |
if generation_mode_data == "text":
|
1256 |
+
return [gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
|
1257 |
elif generation_mode_data == "image":
|
1258 |
+
return [gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
|
1259 |
elif generation_mode_data == "video":
|
1260 |
+
return [gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)]
|
1261 |
|
1262 |
+
|
1263 |
generation_mode.change(
|
1264 |
fn=handle_generation_mode_change,
|
1265 |
inputs=[generation_mode],
|
1266 |
+
outputs=[text_to_video_hint, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch]
|
1267 |
+
)
|
1268 |
+
|
1269 |
+
# Update display when the page loads
|
1270 |
+
block.load(
|
1271 |
+
fn=handle_generation_mode_change, inputs = [
|
1272 |
+
generation_mode
|
1273 |
+
], outputs = [
|
1274 |
+
text_to_video_hint, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch
|
1275 |
+
]
|
1276 |
+
)
|
1277 |
+
|
1278 |
+
# Load saved preferences when the page loads
|
1279 |
+
block.load(
|
1280 |
+
fn=load_preferences, inputs = [
|
1281 |
+
local_storage
|
1282 |
+
], outputs = [
|
1283 |
+
generation_mode
|
1284 |
+
]
|
1285 |
)
|
1286 |
|
1287 |
block.launch(mcp_server=True, ssr_mode=False)
|