Spaces:
Running
Running
Start & end frame mode
Browse files
app.py
CHANGED
@@ -7,7 +7,14 @@ os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.di
|
|
7 |
try:
|
8 |
import spaces
|
9 |
except:
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import gradio as gr
|
12 |
import torch
|
13 |
import traceback
|
@@ -198,9 +205,6 @@ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, devi
|
|
198 |
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
|
199 |
#print(f"Tensor shape: {frames_pt.shape}")
|
200 |
|
201 |
-
# 20250507 pftq: Save pixel frames for use in worker
|
202 |
-
input_video_pixels = frames_pt.cpu()
|
203 |
-
|
204 |
# 20250506 pftq: Move to device
|
205 |
#print(f"Moving tensor to device: {device}")
|
206 |
frames_pt = frames_pt.to(device)
|
@@ -252,7 +256,7 @@ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, devi
|
|
252 |
torch.cuda.empty_cache()
|
253 |
#print("VAE moved back to CPU, CUDA cache cleared")
|
254 |
|
255 |
-
return start_latent, input_image_np, history_latents, fps, target_height, target_width
|
256 |
|
257 |
except Exception as e:
|
258 |
print(f"Error in video_encode: {str(e)}")
|
@@ -306,7 +310,7 @@ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
|
|
306 |
return False
|
307 |
|
308 |
@torch.no_grad()
|
309 |
-
def worker(input_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number):
|
310 |
def encode_prompt(prompt, n_prompt):
|
311 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
312 |
|
@@ -412,7 +416,7 @@ def worker(input_image, image_position, prompts, n_prompt, seed, resolution, tot
|
|
412 |
|
413 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
414 |
|
415 |
-
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32
|
416 |
start_latent = start_latent.to(history_latents)
|
417 |
history_pixels = None
|
418 |
|
@@ -575,6 +579,285 @@ def worker(input_image, image_position, prompts, n_prompt, seed, resolution, tot
|
|
575 |
stream.output_queue.push(('end', None))
|
576 |
return
|
577 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
579 |
@torch.no_grad()
|
580 |
def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
@@ -602,8 +885,8 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
602 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
603 |
|
604 |
# 20250506 pftq: Encode video
|
605 |
-
start_latent, input_image_np, video_latents, fps, height, width = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
606 |
-
start_latent = start_latent.to(dtype=torch.float32
|
607 |
video_latents = video_latents.cpu()
|
608 |
|
609 |
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
@@ -855,18 +1138,17 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
855 |
stream.output_queue.push(('end', None))
|
856 |
return
|
857 |
|
858 |
-
def get_duration(input_image, image_position, prompts, generation_mode, n_prompt, seed, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number):
|
859 |
return allocation_time
|
860 |
|
861 |
-
# Remove this decorator if you run on local
|
862 |
@spaces.GPU(duration=get_duration)
|
863 |
-
def process_on_gpu(input_image, image_position, prompts, generation_mode, n_prompt, seed, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number
|
864 |
):
|
865 |
start = time.time()
|
866 |
global stream
|
867 |
stream = AsyncStream()
|
868 |
|
869 |
-
async_run(worker, input_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number)
|
870 |
|
871 |
output_filename = None
|
872 |
|
@@ -896,6 +1178,7 @@ def process_on_gpu(input_image, image_position, prompts, generation_mode, n_prom
|
|
896 |
break
|
897 |
|
898 |
def process(input_image,
|
|
|
899 |
image_position=0,
|
900 |
prompt="",
|
901 |
generation_mode="image",
|
@@ -907,18 +1190,18 @@ def process(input_image,
|
|
907 |
resolution=640,
|
908 |
total_second_length=5,
|
909 |
latent_window_size=9,
|
910 |
-
steps=
|
911 |
cfg=1.0,
|
912 |
gs=10.0,
|
913 |
rs=0.0,
|
914 |
gpu_memory_preservation=6,
|
915 |
-
enable_preview=
|
916 |
use_teacache=False,
|
917 |
mp4_crf=16,
|
918 |
fps_number=30
|
919 |
):
|
920 |
if auto_allocation:
|
921 |
-
allocation_time = min(total_second_length * 60 * (1.5 if use_teacache else 3.0) * (1 + ((steps - 25) / 25)), 600)
|
922 |
|
923 |
if torch.cuda.device_count() == 0:
|
924 |
gr.Warning('Set this space to GPU config to make it work.')
|
@@ -939,6 +1222,7 @@ def process(input_image,
|
|
939 |
yield gr.update(label="Previewed Frames"), None, '', '', gr.update(interactive=False), gr.update(interactive=True), gr.skip()
|
940 |
|
941 |
yield from process_on_gpu(input_image,
|
|
|
942 |
image_position,
|
943 |
prompts,
|
944 |
generation_mode,
|
@@ -962,7 +1246,6 @@ def process(input_image,
|
|
962 |
def get_duration_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
963 |
return allocation_time
|
964 |
|
965 |
-
# Remove this decorator if you run on local
|
966 |
@spaces.GPU(duration=get_duration_video)
|
967 |
def process_video_on_gpu(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
968 |
start = time.time()
|
@@ -1003,7 +1286,7 @@ def process_video_on_gpu(input_video, prompts, n_prompt, seed, batch, resolution
|
|
1003 |
def process_video(input_video, prompt, n_prompt, randomize_seed, seed, auto_allocation, allocation_time, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
1004 |
global high_vram
|
1005 |
if auto_allocation:
|
1006 |
-
allocation_time = min(total_second_length * 60 * (2.5 if use_teacache else 3.5) * (1 + ((steps - 25) / 25)), 600)
|
1007 |
|
1008 |
if torch.cuda.device_count() == 0:
|
1009 |
gr.Warning('Set this space to GPU config to make it work.')
|
@@ -1103,9 +1386,10 @@ with block:
|
|
1103 |
local_storage = gr.BrowserState(default_local_storage)
|
1104 |
with gr.Row():
|
1105 |
with gr.Column():
|
1106 |
-
generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
|
1107 |
text_to_video_hint = gr.HTML("Text-to-Video badly works with a flash effect at the start. I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
|
1108 |
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
|
|
1109 |
image_position = gr.Slider(label="Image position", minimum=0, maximum=100, value=0, step=1, info='0=Video start; 100=Video end (lower quality)')
|
1110 |
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
1111 |
timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
|
@@ -1131,7 +1415,7 @@ with block:
|
|
1131 |
enable_preview = gr.Checkbox(label='Enable preview', value=True, info='Display a preview around each second generated but it costs 2 sec. for each second generated.')
|
1132 |
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed and no break in brightness, but often makes hands and fingers slightly worse.')
|
1133 |
|
1134 |
-
n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
1135 |
|
1136 |
fps_number = gr.Slider(label="Frame per seconds", info="The model is trained for 30 fps so other fps may generate weird results", minimum=10, maximum=60, value=30, step=1)
|
1137 |
|
@@ -1186,8 +1470,7 @@ with block:
|
|
1186 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
1187 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1188 |
|
1189 |
-
|
1190 |
-
ips = [input_image, image_position, final_prompt, generation_mode, n_prompt, randomize_seed, seed, auto_allocation, allocation_time, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number]
|
1191 |
ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, auto_allocation, allocation_time, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
1192 |
|
1193 |
gr.Examples(
|
@@ -1195,10 +1478,11 @@ with block:
|
|
1195 |
examples = [
|
1196 |
[
|
1197 |
None, # input_image
|
|
|
1198 |
0, # image_position
|
1199 |
"Overcrowed street in Japan, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1200 |
"text", # generation_mode
|
1201 |
-
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1202 |
True, # randomize_seed
|
1203 |
42, # seed
|
1204 |
True, # auto_allocation
|
@@ -1229,10 +1513,11 @@ with block:
|
|
1229 |
examples = [
|
1230 |
[
|
1231 |
"./img_examples/Example1.png", # input_image
|
|
|
1232 |
0, # image_position
|
1233 |
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1234 |
"image", # generation_mode
|
1235 |
-
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1236 |
True, # randomize_seed
|
1237 |
42, # seed
|
1238 |
True, # auto_allocation
|
@@ -1252,10 +1537,11 @@ with block:
|
|
1252 |
],
|
1253 |
[
|
1254 |
"./img_examples/Example2.webp", # input_image
|
|
|
1255 |
0, # image_position
|
1256 |
"A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks, the man stops talking and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens",
|
1257 |
"image", # generation_mode
|
1258 |
-
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1259 |
True, # randomize_seed
|
1260 |
42, # seed
|
1261 |
True, # auto_allocation
|
@@ -1275,10 +1561,11 @@ with block:
|
|
1275 |
],
|
1276 |
[
|
1277 |
"./img_examples/Example2.webp", # input_image
|
|
|
1278 |
0, # image_position
|
1279 |
"A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks, the woman stops talking and the woman listens A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens",
|
1280 |
"image", # generation_mode
|
1281 |
-
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1282 |
True, # randomize_seed
|
1283 |
42, # seed
|
1284 |
True, # auto_allocation
|
@@ -1298,10 +1585,11 @@ with block:
|
|
1298 |
],
|
1299 |
[
|
1300 |
"./img_examples/Example3.jpg", # input_image
|
|
|
1301 |
0, # image_position
|
1302 |
-
"
|
1303 |
"image", # generation_mode
|
1304 |
-
"
|
1305 |
True, # randomize_seed
|
1306 |
42, # seed
|
1307 |
True, # auto_allocation
|
@@ -1321,10 +1609,11 @@ with block:
|
|
1321 |
],
|
1322 |
[
|
1323 |
"./img_examples/Example4.webp", # input_image
|
|
|
1324 |
100, # image_position
|
1325 |
"A building starting to explode, photorealistic, realisitc, 8k, insanely detailed",
|
1326 |
"image", # generation_mode
|
1327 |
-
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1328 |
True, # randomize_seed
|
1329 |
42, # seed
|
1330 |
True, # auto_allocation
|
@@ -1350,13 +1639,47 @@ with block:
|
|
1350 |
cache_examples = False,
|
1351 |
)
|
1352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1353 |
gr.Examples(
|
1354 |
label = "🎥 Examples from video",
|
1355 |
examples = [
|
1356 |
[
|
1357 |
"./img_examples/Example1.mp4", # input_video
|
1358 |
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1359 |
-
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1360 |
True, # randomize_seed
|
1361 |
42, # seed
|
1362 |
True, # auto_allocation
|
@@ -1401,17 +1724,77 @@ with block:
|
|
1401 |
def check_parameters(generation_mode, input_image, input_video):
|
1402 |
if generation_mode == "image" and input_image is None:
|
1403 |
raise gr.Error("Please provide an image to extend.")
|
|
|
|
|
1404 |
if generation_mode == "video" and input_video is None:
|
1405 |
raise gr.Error("Please provide a video to extend.")
|
1406 |
return [gr.update(interactive=True), gr.update(visible = True)]
|
1407 |
|
1408 |
def handle_generation_mode_change(generation_mode_data):
|
1409 |
if generation_mode_data == "text":
|
1410 |
-
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1411 |
elif generation_mode_data == "image":
|
1412 |
-
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1413 |
elif generation_mode_data == "video":
|
1414 |
-
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1415 |
|
1416 |
prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
|
1417 |
timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
|
@@ -1433,7 +1816,7 @@ with block:
|
|
1433 |
generation_mode.change(
|
1434 |
fn=handle_generation_mode_change,
|
1435 |
inputs=[generation_mode],
|
1436 |
-
outputs=[text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint, fps_number]
|
1437 |
)
|
1438 |
|
1439 |
# Update display when the page loads
|
@@ -1441,7 +1824,7 @@ with block:
|
|
1441 |
fn=handle_generation_mode_change, inputs = [
|
1442 |
generation_mode
|
1443 |
], outputs = [
|
1444 |
-
text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint, fps_number
|
1445 |
]
|
1446 |
)
|
1447 |
|
|
|
7 |
try:
|
8 |
import spaces
|
9 |
except:
|
10 |
+
class spaces():
|
11 |
+
def GPU(*args, **kwargs):
|
12 |
+
def decorator(function):
|
13 |
+
def new_function(*dummy_args, **dummy_kwargs):
|
14 |
+
return function(*dummy_args, **dummy_kwargs)
|
15 |
+
return new_function
|
16 |
+
return decorator
|
17 |
+
|
18 |
import gradio as gr
|
19 |
import torch
|
20 |
import traceback
|
|
|
205 |
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
|
206 |
#print(f"Tensor shape: {frames_pt.shape}")
|
207 |
|
|
|
|
|
|
|
208 |
# 20250506 pftq: Move to device
|
209 |
#print(f"Moving tensor to device: {device}")
|
210 |
frames_pt = frames_pt.to(device)
|
|
|
256 |
torch.cuda.empty_cache()
|
257 |
#print("VAE moved back to CPU, CUDA cache cleared")
|
258 |
|
259 |
+
return start_latent, input_image_np, history_latents, fps, target_height, target_width
|
260 |
|
261 |
except Exception as e:
|
262 |
print(f"Error in video_encode: {str(e)}")
|
|
|
310 |
return False
|
311 |
|
312 |
@torch.no_grad()
|
313 |
+
def worker(input_image, end_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number):
|
314 |
def encode_prompt(prompt, n_prompt):
|
315 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
316 |
|
|
|
416 |
|
417 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
418 |
|
419 |
+
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32, device=cpu)
|
420 |
start_latent = start_latent.to(history_latents)
|
421 |
history_pixels = None
|
422 |
|
|
|
579 |
stream.output_queue.push(('end', None))
|
580 |
return
|
581 |
|
582 |
+
@torch.no_grad()
|
583 |
+
def worker_start_end(input_image, end_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number):
|
584 |
+
def encode_prompt(prompt, n_prompt):
|
585 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
586 |
+
|
587 |
+
if cfg == 1:
|
588 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
589 |
+
else:
|
590 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
591 |
+
|
592 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
593 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
594 |
+
|
595 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
596 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
597 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
598 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
599 |
+
return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
|
600 |
+
|
601 |
+
total_latent_sections = (total_second_length * fps_number) / (latent_window_size * 4)
|
602 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
603 |
+
|
604 |
+
job_id = generate_timestamp()
|
605 |
+
|
606 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
607 |
+
|
608 |
+
try:
|
609 |
+
# Clean GPU
|
610 |
+
if not high_vram:
|
611 |
+
unload_complete_models(
|
612 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
613 |
+
)
|
614 |
+
|
615 |
+
# Text encoding
|
616 |
+
|
617 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
618 |
+
|
619 |
+
if not high_vram:
|
620 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
621 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
622 |
+
|
623 |
+
|
624 |
+
prompt_parameters = []
|
625 |
+
|
626 |
+
for prompt_part in prompts[:total_latent_sections]:
|
627 |
+
prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
|
628 |
+
|
629 |
+
# Clean GPU
|
630 |
+
if not high_vram:
|
631 |
+
unload_complete_models(
|
632 |
+
text_encoder, text_encoder_2
|
633 |
+
)
|
634 |
+
|
635 |
+
# Processing input image (start frame)
|
636 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Processing start frame ...'))))
|
637 |
+
|
638 |
+
H, W, C = input_image.shape
|
639 |
+
height, width = find_nearest_bucket(H, W, resolution=resolution)
|
640 |
+
has_end_image = end_image is not None
|
641 |
+
|
642 |
+
def get_start_latent(input_image, has_end_image, end_image, height, width, vae, gpu, image_encoder, high_vram):
|
643 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
644 |
+
|
645 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}_start.png'))
|
646 |
+
|
647 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
648 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
649 |
+
|
650 |
+
# Processing end image (if provided)
|
651 |
+
if has_end_image:
|
652 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Processing end frame ...'))))
|
653 |
+
|
654 |
+
end_image_np = resize_and_center_crop(end_image, target_width=width, target_height=height)
|
655 |
+
|
656 |
+
Image.fromarray(end_image_np).save(os.path.join(outputs_folder, f'{job_id}_end.png'))
|
657 |
+
|
658 |
+
end_image_pt = torch.from_numpy(end_image_np).float() / 127.5 - 1
|
659 |
+
end_image_pt = end_image_pt.permute(2, 0, 1)[None, :, None]
|
660 |
+
|
661 |
+
# VAE encoding
|
662 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
663 |
+
|
664 |
+
if not high_vram:
|
665 |
+
load_model_as_complete(vae, target_device=gpu)
|
666 |
+
|
667 |
+
start_latent = vae_encode(input_image_pt, vae)
|
668 |
+
|
669 |
+
if has_end_image:
|
670 |
+
end_latent = vae_encode(end_image_pt, vae)
|
671 |
+
|
672 |
+
# CLIP Vision
|
673 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
674 |
+
|
675 |
+
if not high_vram:
|
676 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
677 |
+
|
678 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
679 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
680 |
+
|
681 |
+
if has_end_image:
|
682 |
+
end_image_encoder_output = hf_clip_vision_encode(end_image_np, feature_extractor, image_encoder)
|
683 |
+
end_image_encoder_last_hidden_state = end_image_encoder_output.last_hidden_state
|
684 |
+
# Combine both image embeddings or use a weighted approach
|
685 |
+
image_encoder_last_hidden_state = (image_encoder_last_hidden_state + end_image_encoder_last_hidden_state) / 2
|
686 |
+
|
687 |
+
# Clean GPU
|
688 |
+
if not high_vram:
|
689 |
+
unload_complete_models(
|
690 |
+
image_encoder
|
691 |
+
)
|
692 |
+
|
693 |
+
return [start_latent, end_latent, image_encoder_last_hidden_state]
|
694 |
+
|
695 |
+
[start_latent, end_latent, image_encoder_last_hidden_state] = get_start_latent(input_image, has_end_image, end_image, height, width, vae, gpu, image_encoder, high_vram)
|
696 |
+
|
697 |
+
# Dtype
|
698 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
699 |
+
|
700 |
+
# Sampling
|
701 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
702 |
+
|
703 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
704 |
+
num_frames = latent_window_size * 4 - 3
|
705 |
+
|
706 |
+
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32, device=cpu)
|
707 |
+
start_latent = start_latent.to(history_latents)
|
708 |
+
if has_end_image:
|
709 |
+
end_latent = end_latent.to(history_latents)
|
710 |
+
|
711 |
+
history_pixels = None
|
712 |
+
total_generated_latent_frames = 0
|
713 |
+
|
714 |
+
if total_latent_sections > 4:
|
715 |
+
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
|
716 |
+
# items looks better than expanding it when total_latent_sections > 4
|
717 |
+
# One can try to remove below trick and just
|
718 |
+
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
|
719 |
+
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
720 |
+
else:
|
721 |
+
# Convert an iterator to a list
|
722 |
+
latent_paddings = list(range(total_latent_sections - 1, -1, -1))
|
723 |
+
|
724 |
+
if enable_preview:
|
725 |
+
def callback(d):
|
726 |
+
preview = d['denoised']
|
727 |
+
preview = vae_decode_fake(preview)
|
728 |
+
|
729 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
730 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
731 |
+
|
732 |
+
if stream.input_queue.top() == 'end':
|
733 |
+
stream.output_queue.push(('end', None))
|
734 |
+
raise KeyboardInterrupt('User ends the task.')
|
735 |
+
|
736 |
+
current_step = d['i'] + 1
|
737 |
+
percentage = int(100.0 * current_step / steps)
|
738 |
+
hint = f'Sampling {current_step}/{steps}'
|
739 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps_number) :.2f} seconds (FPS-30), Resolution: {height}px * {width}px. The video is being extended now ...'
|
740 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
741 |
+
return
|
742 |
+
else:
|
743 |
+
def callback(d):
|
744 |
+
return
|
745 |
+
|
746 |
+
def post_process(job_id, start_latent, generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, outputs_folder, mp4_crf, stream, is_last_section):
|
747 |
+
if is_last_section:
|
748 |
+
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
749 |
+
|
750 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
751 |
+
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
752 |
+
|
753 |
+
if not high_vram:
|
754 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
755 |
+
load_model_as_complete(vae, target_device=gpu)
|
756 |
+
|
757 |
+
if history_pixels is None:
|
758 |
+
history_pixels = vae_decode(history_latents[:, :, :total_generated_latent_frames, :, :], vae).cpu()
|
759 |
+
else:
|
760 |
+
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
|
761 |
+
overlapped_frames = latent_window_size * 4 - 3
|
762 |
+
|
763 |
+
current_pixels = vae_decode(history_latents[:, :, :min(total_generated_latent_frames, section_latent_frames)], vae).cpu()
|
764 |
+
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
765 |
+
|
766 |
+
if not high_vram:
|
767 |
+
unload_complete_models(vae)
|
768 |
+
|
769 |
+
if enable_preview or is_last_section:
|
770 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
771 |
+
|
772 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps_number, crf=mp4_crf)
|
773 |
+
|
774 |
+
print(f'Decoded. Pixel shape {history_pixels.shape}')
|
775 |
+
|
776 |
+
stream.output_queue.push(('file', output_filename))
|
777 |
+
|
778 |
+
return [total_generated_latent_frames, history_latents, history_pixels]
|
779 |
+
|
780 |
+
for latent_padding in latent_paddings:
|
781 |
+
is_last_section = latent_padding == 0
|
782 |
+
is_first_section = latent_padding == latent_paddings[0]
|
783 |
+
latent_padding_size = latent_padding * latent_window_size
|
784 |
+
|
785 |
+
if stream.input_queue.top() == 'end':
|
786 |
+
stream.output_queue.push(('end', None))
|
787 |
+
return
|
788 |
+
|
789 |
+
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}, is_first_section = {is_first_section}')
|
790 |
+
|
791 |
+
if len(prompt_parameters) > 0:
|
792 |
+
[llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(len(prompt_parameters) - 1)
|
793 |
+
|
794 |
+
indices = torch.arange(1 + latent_padding_size + latent_window_size + 1 + 2 + 16).unsqueeze(0)
|
795 |
+
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
796 |
+
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
797 |
+
|
798 |
+
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
799 |
+
|
800 |
+
# Use end image latent for the first section if provided
|
801 |
+
if has_end_image and is_first_section:
|
802 |
+
clean_latents_post = end_latent
|
803 |
+
|
804 |
+
clean_latents = torch.cat([start_latent, clean_latents_post], dim=2)
|
805 |
+
|
806 |
+
if not high_vram:
|
807 |
+
unload_complete_models()
|
808 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
809 |
+
|
810 |
+
if use_teacache:
|
811 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
812 |
+
else:
|
813 |
+
transformer.initialize_teacache(enable_teacache=False)
|
814 |
+
|
815 |
+
generated_latents = sample_hunyuan(
|
816 |
+
transformer=transformer,
|
817 |
+
sampler='unipc',
|
818 |
+
width=width,
|
819 |
+
height=height,
|
820 |
+
frames=num_frames,
|
821 |
+
real_guidance_scale=cfg,
|
822 |
+
distilled_guidance_scale=gs,
|
823 |
+
guidance_rescale=rs,
|
824 |
+
# shift=3.0,
|
825 |
+
num_inference_steps=steps,
|
826 |
+
generator=rnd,
|
827 |
+
prompt_embeds=llama_vec,
|
828 |
+
prompt_embeds_mask=llama_attention_mask,
|
829 |
+
prompt_poolers=clip_l_pooler,
|
830 |
+
negative_prompt_embeds=llama_vec_n,
|
831 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
832 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
833 |
+
device=gpu,
|
834 |
+
dtype=torch.bfloat16,
|
835 |
+
image_embeddings=image_encoder_last_hidden_state,
|
836 |
+
latent_indices=latent_indices,
|
837 |
+
clean_latents=clean_latents,
|
838 |
+
clean_latent_indices=clean_latent_indices,
|
839 |
+
clean_latents_2x=clean_latents_2x,
|
840 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
841 |
+
clean_latents_4x=clean_latents_4x,
|
842 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
843 |
+
callback=callback,
|
844 |
+
)
|
845 |
+
|
846 |
+
[total_generated_latent_frames, history_latents, history_pixels] = post_process(job_id, start_latent, generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, outputs_folder, mp4_crf, stream, is_last_section)
|
847 |
+
|
848 |
+
if is_last_section:
|
849 |
+
break
|
850 |
+
except:
|
851 |
+
traceback.print_exc()
|
852 |
+
|
853 |
+
if not high_vram:
|
854 |
+
unload_complete_models(
|
855 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
856 |
+
)
|
857 |
+
|
858 |
+
stream.output_queue.push(('end', None))
|
859 |
+
return
|
860 |
+
|
861 |
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
862 |
@torch.no_grad()
|
863 |
def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
|
|
885 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
886 |
|
887 |
# 20250506 pftq: Encode video
|
888 |
+
start_latent, input_image_np, video_latents, fps, height, width = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
889 |
+
start_latent = start_latent.to(dtype=torch.float32, device=cpu)
|
890 |
video_latents = video_latents.cpu()
|
891 |
|
892 |
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
|
|
1138 |
stream.output_queue.push(('end', None))
|
1139 |
return
|
1140 |
|
1141 |
+
def get_duration(input_image, end_image, image_position, prompts, generation_mode, n_prompt, seed, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number):
|
1142 |
return allocation_time
|
1143 |
|
|
|
1144 |
@spaces.GPU(duration=get_duration)
|
1145 |
+
def process_on_gpu(input_image, end_image, image_position, prompts, generation_mode, n_prompt, seed, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number
|
1146 |
):
|
1147 |
start = time.time()
|
1148 |
global stream
|
1149 |
stream = AsyncStream()
|
1150 |
|
1151 |
+
async_run(worker_start_end if generation_mode == "start_end" else worker, input_image, end_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number)
|
1152 |
|
1153 |
output_filename = None
|
1154 |
|
|
|
1178 |
break
|
1179 |
|
1180 |
def process(input_image,
|
1181 |
+
end_image,
|
1182 |
image_position=0,
|
1183 |
prompt="",
|
1184 |
generation_mode="image",
|
|
|
1190 |
resolution=640,
|
1191 |
total_second_length=5,
|
1192 |
latent_window_size=9,
|
1193 |
+
steps=30,
|
1194 |
cfg=1.0,
|
1195 |
gs=10.0,
|
1196 |
rs=0.0,
|
1197 |
gpu_memory_preservation=6,
|
1198 |
+
enable_preview=False,
|
1199 |
use_teacache=False,
|
1200 |
mp4_crf=16,
|
1201 |
fps_number=30
|
1202 |
):
|
1203 |
if auto_allocation:
|
1204 |
+
allocation_time = min(total_second_length * 60 * (1.5 if use_teacache else 3.0) * (1 + ((steps - 25) / 25))**2, 600)
|
1205 |
|
1206 |
if torch.cuda.device_count() == 0:
|
1207 |
gr.Warning('Set this space to GPU config to make it work.')
|
|
|
1222 |
yield gr.update(label="Previewed Frames"), None, '', '', gr.update(interactive=False), gr.update(interactive=True), gr.skip()
|
1223 |
|
1224 |
yield from process_on_gpu(input_image,
|
1225 |
+
end_image,
|
1226 |
image_position,
|
1227 |
prompts,
|
1228 |
generation_mode,
|
|
|
1246 |
def get_duration_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
1247 |
return allocation_time
|
1248 |
|
|
|
1249 |
@spaces.GPU(duration=get_duration_video)
|
1250 |
def process_video_on_gpu(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, allocation_time, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
1251 |
start = time.time()
|
|
|
1286 |
def process_video(input_video, prompt, n_prompt, randomize_seed, seed, auto_allocation, allocation_time, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
1287 |
global high_vram
|
1288 |
if auto_allocation:
|
1289 |
+
allocation_time = min(total_second_length * 60 * (2.5 if use_teacache else 3.5) * (1 + ((steps - 25) / 25))**2, 600)
|
1290 |
|
1291 |
if torch.cuda.device_count() == 0:
|
1292 |
gr.Warning('Set this space to GPU config to make it work.')
|
|
|
1386 |
local_storage = gr.BrowserState(default_local_storage)
|
1387 |
with gr.Row():
|
1388 |
with gr.Column():
|
1389 |
+
generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Start & end frames", "start_end"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
|
1390 |
text_to_video_hint = gr.HTML("Text-to-Video badly works with a flash effect at the start. I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
|
1391 |
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
1392 |
+
end_image = gr.Image(sources='upload', type="numpy", label="End Frame (Optional)", height=320)
|
1393 |
image_position = gr.Slider(label="Image position", minimum=0, maximum=100, value=0, step=1, info='0=Video start; 100=Video end (lower quality)')
|
1394 |
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
1395 |
timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
|
|
|
1415 |
enable_preview = gr.Checkbox(label='Enable preview', value=True, info='Display a preview around each second generated but it costs 2 sec. for each second generated.')
|
1416 |
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed and no break in brightness, but often makes hands and fingers slightly worse.')
|
1417 |
|
1418 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
1419 |
|
1420 |
fps_number = gr.Slider(label="Frame per seconds", info="The model is trained for 30 fps so other fps may generate weird results", minimum=10, maximum=60, value=30, step=1)
|
1421 |
|
|
|
1470 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
1471 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1472 |
|
1473 |
+
ips = [input_image, end_image, image_position, final_prompt, generation_mode, n_prompt, randomize_seed, seed, auto_allocation, allocation_time, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, fps_number]
|
|
|
1474 |
ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, auto_allocation, allocation_time, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
1475 |
|
1476 |
gr.Examples(
|
|
|
1478 |
examples = [
|
1479 |
[
|
1480 |
None, # input_image
|
1481 |
+
None, # end_image
|
1482 |
0, # image_position
|
1483 |
"Overcrowed street in Japan, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1484 |
"text", # generation_mode
|
1485 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1486 |
True, # randomize_seed
|
1487 |
42, # seed
|
1488 |
True, # auto_allocation
|
|
|
1513 |
examples = [
|
1514 |
[
|
1515 |
"./img_examples/Example1.png", # input_image
|
1516 |
+
None, # end_image
|
1517 |
0, # image_position
|
1518 |
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1519 |
"image", # generation_mode
|
1520 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1521 |
True, # randomize_seed
|
1522 |
42, # seed
|
1523 |
True, # auto_allocation
|
|
|
1537 |
],
|
1538 |
[
|
1539 |
"./img_examples/Example2.webp", # input_image
|
1540 |
+
None, # end_image
|
1541 |
0, # image_position
|
1542 |
"A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks, the man stops talking and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens",
|
1543 |
"image", # generation_mode
|
1544 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1545 |
True, # randomize_seed
|
1546 |
42, # seed
|
1547 |
True, # auto_allocation
|
|
|
1561 |
],
|
1562 |
[
|
1563 |
"./img_examples/Example2.webp", # input_image
|
1564 |
+
None, # end_image
|
1565 |
0, # image_position
|
1566 |
"A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks, the woman stops talking and the woman listens A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens",
|
1567 |
"image", # generation_mode
|
1568 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1569 |
True, # randomize_seed
|
1570 |
42, # seed
|
1571 |
True, # auto_allocation
|
|
|
1585 |
],
|
1586 |
[
|
1587 |
"./img_examples/Example3.jpg", # input_image
|
1588 |
+
None, # end_image
|
1589 |
0, # image_position
|
1590 |
+
"एउटा केटा दायाँतिर हिँडिरहेको छ, पूर्ण दृश्य, पूर्ण-लम्बाइको दृश्य, कार्टुन",
|
1591 |
"image", # generation_mode
|
1592 |
+
"हात छुटेको, लामो हात, अवास्तविक स्थिति, असम्भव विकृति, देखिने हड्डी, मांसपेशी संकुचन, कमजोर फ्रेम, धमिलो, धमिलो, अत्यधिक चिल्लो", # n_prompt
|
1593 |
True, # randomize_seed
|
1594 |
42, # seed
|
1595 |
True, # auto_allocation
|
|
|
1609 |
],
|
1610 |
[
|
1611 |
"./img_examples/Example4.webp", # input_image
|
1612 |
+
None, # end_image
|
1613 |
100, # image_position
|
1614 |
"A building starting to explode, photorealistic, realisitc, 8k, insanely detailed",
|
1615 |
"image", # generation_mode
|
1616 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1617 |
True, # randomize_seed
|
1618 |
42, # seed
|
1619 |
True, # auto_allocation
|
|
|
1639 |
cache_examples = False,
|
1640 |
)
|
1641 |
|
1642 |
+
gr.Examples(
|
1643 |
+
label = "🖼️ Examples from start and end frames",
|
1644 |
+
examples = [
|
1645 |
+
[
|
1646 |
+
"./img_examples/Example5.png", # input_image
|
1647 |
+
"./img_examples/Example6.png", # end_image
|
1648 |
+
0, # image_position
|
1649 |
+
"A woman jumps out of the train and arrives on the ground, viewed from the outside, photorealistic, realistic, amateur photography, midday, insanely detailed, 8k", # generation_mode
|
1650 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1651 |
+
True, # randomize_seed
|
1652 |
+
42, # seed
|
1653 |
+
True, # auto_allocation
|
1654 |
+
180, # allocation_time
|
1655 |
+
672, # resolution
|
1656 |
+
1, # total_second_length
|
1657 |
+
9, # latent_window_size
|
1658 |
+
30, # steps
|
1659 |
+
1.0, # cfg
|
1660 |
+
10.0, # gs
|
1661 |
+
0.0, # rs
|
1662 |
+
6, # gpu_memory_preservation
|
1663 |
+
False, # enable_preview
|
1664 |
+
True, # use_teacache
|
1665 |
+
16, # mp4_crf
|
1666 |
+
30 # fps_number
|
1667 |
+
],
|
1668 |
+
],
|
1669 |
+
run_on_click = True,
|
1670 |
+
fn = process,
|
1671 |
+
inputs = ips,
|
1672 |
+
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button, warning],
|
1673 |
+
cache_examples = False,
|
1674 |
+
)
|
1675 |
+
|
1676 |
gr.Examples(
|
1677 |
label = "🎥 Examples from video",
|
1678 |
examples = [
|
1679 |
[
|
1680 |
"./img_examples/Example1.mp4", # input_video
|
1681 |
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1682 |
+
"Missing arm, long hand, unrealistic position, impossible contortion, visible bone, muscle contraction, poorly framed, blurred, blurry, over-smooth", # n_prompt
|
1683 |
True, # randomize_seed
|
1684 |
42, # seed
|
1685 |
True, # auto_allocation
|
|
|
1724 |
def check_parameters(generation_mode, input_image, input_video):
|
1725 |
if generation_mode == "image" and input_image is None:
|
1726 |
raise gr.Error("Please provide an image to extend.")
|
1727 |
+
if generation_mode == "start_end" and input_image is None:
|
1728 |
+
raise gr.Error("Please provide an image to extend.")
|
1729 |
if generation_mode == "video" and input_video is None:
|
1730 |
raise gr.Error("Please provide a video to extend.")
|
1731 |
return [gr.update(interactive=True), gr.update(visible = True)]
|
1732 |
|
1733 |
def handle_generation_mode_change(generation_mode_data):
|
1734 |
if generation_mode_data == "text":
|
1735 |
+
return [
|
1736 |
+
gr.update(visible = True), # text_to_video_hint
|
1737 |
+
gr.update(visible = False), # image_position
|
1738 |
+
gr.update(visible = False), # input_image
|
1739 |
+
gr.update(visible = False), # end_image
|
1740 |
+
gr.update(visible = False), # input_video
|
1741 |
+
gr.update(visible = True), # start_button
|
1742 |
+
gr.update(visible = False), # start_button_video
|
1743 |
+
gr.update(visible = False), # no_resize
|
1744 |
+
gr.update(visible = False), # batch
|
1745 |
+
gr.update(visible = False), # num_clean_frames
|
1746 |
+
gr.update(visible = False), # vae_batch
|
1747 |
+
gr.update(visible = False), # prompt_hint
|
1748 |
+
gr.update(visible = True) # fps_number
|
1749 |
+
]
|
1750 |
elif generation_mode_data == "image":
|
1751 |
+
return [
|
1752 |
+
gr.update(visible = False), # text_to_video_hint
|
1753 |
+
gr.update(visible = True), # image_position
|
1754 |
+
gr.update(visible = True), # input_image
|
1755 |
+
gr.update(visible = False), # end_image
|
1756 |
+
gr.update(visible = False), # input_video
|
1757 |
+
gr.update(visible = True), # start_button
|
1758 |
+
gr.update(visible = False), # start_button_video
|
1759 |
+
gr.update(visible = False), # no_resize
|
1760 |
+
gr.update(visible = False), # batch
|
1761 |
+
gr.update(visible = False), # num_clean_frames
|
1762 |
+
gr.update(visible = False), # vae_batch
|
1763 |
+
gr.update(visible = False), # prompt_hint
|
1764 |
+
gr.update(visible = True) # fps_number
|
1765 |
+
]
|
1766 |
+
elif generation_mode_data == "start_end":
|
1767 |
+
return [
|
1768 |
+
gr.update(visible = False), # text_to_video_hint
|
1769 |
+
gr.update(visible = False), # image_position
|
1770 |
+
gr.update(visible = True), # input_image
|
1771 |
+
gr.update(visible = True), # end_image
|
1772 |
+
gr.update(visible = False), # input_video
|
1773 |
+
gr.update(visible = True), # start_button
|
1774 |
+
gr.update(visible = False), # start_button_video
|
1775 |
+
gr.update(visible = False), # no_resize
|
1776 |
+
gr.update(visible = False), # batch
|
1777 |
+
gr.update(visible = False), # num_clean_frames
|
1778 |
+
gr.update(visible = False), # vae_batch
|
1779 |
+
gr.update(visible = False), # prompt_hint
|
1780 |
+
gr.update(visible = True) # fps_number
|
1781 |
+
]
|
1782 |
elif generation_mode_data == "video":
|
1783 |
+
return [
|
1784 |
+
gr.update(visible = False), # text_to_video_hint
|
1785 |
+
gr.update(visible = False), # image_position
|
1786 |
+
gr.update(visible = False), # input_image
|
1787 |
+
gr.update(visible = False), # end_image
|
1788 |
+
gr.update(visible = True), # input_video
|
1789 |
+
gr.update(visible = False), # start_button
|
1790 |
+
gr.update(visible = True), # start_button_video
|
1791 |
+
gr.update(visible = True), # no_resize
|
1792 |
+
gr.update(visible = True), # batch
|
1793 |
+
gr.update(visible = True), # num_clean_frames
|
1794 |
+
gr.update(visible = True), # vae_batch
|
1795 |
+
gr.update(visible = True), # prompt_hint
|
1796 |
+
gr.update(visible = False) # fps_number
|
1797 |
+
]
|
1798 |
|
1799 |
prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
|
1800 |
timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
|
|
|
1816 |
generation_mode.change(
|
1817 |
fn=handle_generation_mode_change,
|
1818 |
inputs=[generation_mode],
|
1819 |
+
outputs=[text_to_video_hint, image_position, input_image, end_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint, fps_number]
|
1820 |
)
|
1821 |
|
1822 |
# Update display when the page loads
|
|
|
1824 |
fn=handle_generation_mode_change, inputs = [
|
1825 |
generation_mode
|
1826 |
], outputs = [
|
1827 |
+
text_to_video_hint, image_position, input_image, end_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint, fps_number
|
1828 |
]
|
1829 |
)
|
1830 |
|