Fabrice-TIERCELIN commited on
Commit
63ca2b5
·
verified ·
1 Parent(s): edbe2df

Simplify code

Browse files
Files changed (1) hide show
  1. diffusers_helper/hunyuan.py +111 -111
diffusers_helper/hunyuan.py CHANGED
@@ -1,111 +1,111 @@
1
- import torch
2
-
3
- from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
4
- from diffusers_helper.utils import crop_or_pad_yield_mask
5
-
6
-
7
- @torch.no_grad()
8
- def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
9
- assert isinstance(prompt, str)
10
-
11
- prompt = [prompt]
12
-
13
- # LLAMA
14
-
15
- prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
16
- crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
17
-
18
- llama_inputs = tokenizer(
19
- prompt_llama,
20
- padding="max_length",
21
- max_length=max_length + crop_start,
22
- truncation=True,
23
- return_tensors="pt",
24
- return_length=False,
25
- return_overflowing_tokens=False,
26
- return_attention_mask=True,
27
- )
28
-
29
- llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
30
- llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
31
- llama_attention_length = int(llama_attention_mask.sum())
32
-
33
- llama_outputs = text_encoder(
34
- input_ids=llama_input_ids,
35
- attention_mask=llama_attention_mask,
36
- output_hidden_states=True,
37
- )
38
-
39
- llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
40
- # llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
41
- llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
42
-
43
- assert torch.all(llama_attention_mask.bool())
44
-
45
- # CLIP
46
-
47
- clip_l_input_ids = tokenizer_2(
48
- prompt,
49
- padding="max_length",
50
- max_length=77,
51
- truncation=True,
52
- return_overflowing_tokens=False,
53
- return_length=False,
54
- return_tensors="pt",
55
- ).input_ids
56
- clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
57
-
58
- return llama_vec, clip_l_pooler
59
-
60
-
61
- @torch.no_grad()
62
- def vae_decode_fake(latents):
63
- latent_rgb_factors = [
64
- [-0.0395, -0.0331, 0.0445],
65
- [0.0696, 0.0795, 0.0518],
66
- [0.0135, -0.0945, -0.0282],
67
- [0.0108, -0.0250, -0.0765],
68
- [-0.0209, 0.0032, 0.0224],
69
- [-0.0804, -0.0254, -0.0639],
70
- [-0.0991, 0.0271, -0.0669],
71
- [-0.0646, -0.0422, -0.0400],
72
- [-0.0696, -0.0595, -0.0894],
73
- [-0.0799, -0.0208, -0.0375],
74
- [0.1166, 0.1627, 0.0962],
75
- [0.1165, 0.0432, 0.0407],
76
- [-0.2315, -0.1920, -0.1355],
77
- [-0.0270, 0.0401, -0.0821],
78
- [-0.0616, -0.0997, -0.0727],
79
- [0.0249, -0.0469, -0.1703]
80
- ] # From comfyui
81
-
82
- latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
83
-
84
- weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
85
- bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
86
-
87
- images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
88
- images = images.clamp(0.0, 1.0)
89
-
90
- return images
91
-
92
-
93
- @torch.no_grad()
94
- def vae_decode(latents, vae, image_mode=False):
95
- latents = latents / vae.config.scaling_factor
96
-
97
- if not image_mode:
98
- image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
99
- else:
100
- latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
101
- image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
102
- image = torch.cat(image, dim=2)
103
-
104
- return image
105
-
106
-
107
- @torch.no_grad()
108
- def vae_encode(image, vae):
109
- latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
110
- latents = latents * vae.config.scaling_factor
111
- return latents
 
1
+ import torch
2
+
3
+ from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
4
+ from diffusers_helper.utils import crop_or_pad_yield_mask
5
+
6
+
7
+ @torch.no_grad()
8
+ def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
9
+ assert isinstance(prompt, str)
10
+
11
+ prompt = [prompt]
12
+
13
+ # LLAMA
14
+
15
+ prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
16
+ crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
17
+
18
+ llama_inputs = tokenizer(
19
+ prompt_llama,
20
+ padding="max_length",
21
+ max_length=max_length + crop_start,
22
+ truncation=True,
23
+ return_tensors="pt",
24
+ return_length=False,
25
+ return_overflowing_tokens=False,
26
+ return_attention_mask=True,
27
+ )
28
+
29
+ llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
30
+ llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
31
+ llama_attention_length = int(llama_attention_mask.sum())
32
+
33
+ llama_outputs = text_encoder(
34
+ input_ids=llama_input_ids,
35
+ attention_mask=llama_attention_mask,
36
+ output_hidden_states=True,
37
+ )
38
+
39
+ llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
40
+ # llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
41
+ llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
42
+
43
+ assert torch.all(llama_attention_mask.bool())
44
+
45
+ # CLIP
46
+
47
+ clip_l_input_ids = tokenizer_2(
48
+ prompt,
49
+ padding="max_length",
50
+ max_length=77,
51
+ truncation=True,
52
+ return_overflowing_tokens=False,
53
+ return_length=False,
54
+ return_tensors="pt",
55
+ ).input_ids
56
+ clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
57
+
58
+ return llama_vec, clip_l_pooler
59
+
60
+
61
+ @torch.no_grad()
62
+ def vae_decode_fake(latents):
63
+ latent_rgb_factors = [
64
+ [-0.0395, -0.0331, 0.0445],
65
+ [0.0696, 0.0795, 0.0518],
66
+ [0.0135, -0.0945, -0.0282],
67
+ [0.0108, -0.0250, -0.0765],
68
+ [-0.0209, 0.0032, 0.0224],
69
+ [-0.0804, -0.0254, -0.0639],
70
+ [-0.0991, 0.0271, -0.0669],
71
+ [-0.0646, -0.0422, -0.0400],
72
+ [-0.0696, -0.0595, -0.0894],
73
+ [-0.0799, -0.0208, -0.0375],
74
+ [0.1166, 0.1627, 0.0962],
75
+ [0.1165, 0.0432, 0.0407],
76
+ [-0.2315, -0.1920, -0.1355],
77
+ [-0.0270, 0.0401, -0.0821],
78
+ [-0.0616, -0.0997, -0.0727],
79
+ [0.0249, -0.0469, -0.1703]
80
+ ] # From comfyui
81
+
82
+ latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
83
+
84
+ weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
85
+ bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
86
+
87
+ images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
88
+ images = images.clamp(0.0, 1.0)
89
+
90
+ return images
91
+
92
+
93
+ @torch.no_grad()
94
+ def vae_decode(latents, vae, image_mode=False):
95
+ latents = latents / vae.config.scaling_factor
96
+
97
+ if image_mode:
98
+ latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
99
+ image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
100
+ image = torch.cat(image, dim=2)
101
+ else:
102
+ image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
103
+
104
+ return image
105
+
106
+
107
+ @torch.no_grad()
108
+ def vae_encode(image, vae):
109
+ latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
110
+ latents = latents * vae.config.scaling_factor
111
+ return latents