Spaces:
Running
Running
Last frame
Browse files
app.py
CHANGED
@@ -355,31 +355,36 @@ def worker(input_image, prompts, n_prompt, seed, resolution, total_second_length
|
|
355 |
|
356 |
H, W, C = input_image.shape
|
357 |
height, width = find_nearest_bucket(H, W, resolution=resolution)
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
|
|
|
|
380 |
|
381 |
-
|
382 |
-
|
|
|
|
|
|
|
383 |
|
384 |
# Dtype
|
385 |
|
@@ -438,7 +443,7 @@ def worker(input_image, prompts, n_prompt, seed, resolution, total_second_length
|
|
438 |
section_latent_frames = latent_window_size * 2
|
439 |
overlapped_frames = latent_window_size * 4 - 3
|
440 |
|
441 |
-
real_history_latents = history_latents[:, :,
|
442 |
history_pixels = soft_append_bcthw(history_pixels, vae_decode(real_history_latents, vae).cpu(), overlapped_frames)
|
443 |
|
444 |
if not high_vram:
|
@@ -519,78 +524,226 @@ def worker(input_image, prompts, n_prompt, seed, resolution, total_second_length
|
|
519 |
stream.output_queue.push(('end', None))
|
520 |
return
|
521 |
|
522 |
-
|
523 |
-
|
|
|
|
|
524 |
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
n_prompt
|
529 |
-
randomize_seed=True,
|
530 |
-
seed=31337,
|
531 |
-
resolution=640,
|
532 |
-
total_second_length=5,
|
533 |
-
latent_window_size=9,
|
534 |
-
steps=25,
|
535 |
-
cfg=1.0,
|
536 |
-
gs=10.0,
|
537 |
-
rs=0.0,
|
538 |
-
gpu_memory_preservation=6,
|
539 |
-
enable_preview=True,
|
540 |
-
use_teacache=False,
|
541 |
-
mp4_crf=16
|
542 |
-
):
|
543 |
-
start = time.time()
|
544 |
-
global stream
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
549 |
-
return
|
550 |
|
551 |
-
|
552 |
-
|
|
|
|
|
|
|
553 |
|
554 |
-
|
|
|
555 |
|
556 |
-
|
557 |
-
if generation_mode == "text":
|
558 |
-
default_height, default_width = 640, 640
|
559 |
-
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
560 |
-
print("No input image provided. Using a blank white image.")
|
561 |
|
562 |
-
|
563 |
|
564 |
-
|
|
|
|
|
|
|
|
|
|
|
565 |
|
566 |
-
|
567 |
|
568 |
-
|
569 |
|
570 |
-
|
571 |
-
|
|
|
572 |
|
573 |
-
|
574 |
-
output_filename = data
|
575 |
-
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
576 |
|
577 |
-
|
578 |
-
|
579 |
-
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
580 |
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
|
595 |
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
596 |
@spaces.GPU()
|
@@ -860,12 +1013,90 @@ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_
|
|
860 |
stream.output_queue.push(('end', None))
|
861 |
return
|
862 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
863 |
def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
864 |
return total_second_length * 60 * (0.9 if use_teacache else 2.3) * (1 + ((steps - 25) / 100))
|
865 |
|
866 |
# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode
|
867 |
@spaces.GPU(duration=get_duration_video)
|
868 |
-
def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch
|
|
|
869 |
start = time.time()
|
870 |
global stream, high_vram
|
871 |
|
@@ -913,6 +1144,7 @@ def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, re
|
|
913 |
|
914 |
if flag == 'progress':
|
915 |
preview, desc, html = data
|
|
|
916 |
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
917 |
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
|
918 |
|
@@ -1002,6 +1234,7 @@ with block:
|
|
1002 |
generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
|
1003 |
text_to_video_hint = gr.HTML("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
|
1004 |
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
|
|
1005 |
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
1006 |
timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
|
1007 |
prompt_number = gr.Slider(label="Timed prompt number", minimum=0, maximum=1000, value=0, step=1, info='Prompts will automatically appear')
|
@@ -1076,7 +1309,7 @@ with block:
|
|
1076 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1077 |
|
1078 |
# 20250506 pftq: Updated inputs to include num_clean_frames
|
1079 |
-
ips = [input_image, final_prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf]
|
1080 |
ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
1081 |
|
1082 |
gr.Examples(
|
@@ -1084,6 +1317,7 @@ with block:
|
|
1084 |
examples = [
|
1085 |
[
|
1086 |
"./img_examples/Example1.png", # input_image
|
|
|
1087 |
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1088 |
"image", # generation_mode
|
1089 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
@@ -1103,7 +1337,8 @@ with block:
|
|
1103 |
],
|
1104 |
[
|
1105 |
"./img_examples/Example2.webp", # input_image
|
1106 |
-
|
|
|
1107 |
"image", # generation_mode
|
1108 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1109 |
True, # randomize_seed
|
@@ -1122,7 +1357,8 @@ with block:
|
|
1122 |
],
|
1123 |
[
|
1124 |
"./img_examples/Example2.webp", # input_image
|
1125 |
-
|
|
|
1126 |
"image", # generation_mode
|
1127 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1128 |
True, # randomize_seed
|
@@ -1141,6 +1377,7 @@ with block:
|
|
1141 |
],
|
1142 |
[
|
1143 |
"./img_examples/Example3.jpg", # input_image
|
|
|
1144 |
"A boy is walking to the right, full view, full-length view, cartoon",
|
1145 |
"image", # generation_mode
|
1146 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
@@ -1221,13 +1458,12 @@ with block:
|
|
1221 |
|
1222 |
def handle_generation_mode_change(generation_mode_data):
|
1223 |
if generation_mode_data == "text":
|
1224 |
-
return [gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
|
1225 |
elif generation_mode_data == "image":
|
1226 |
-
return [gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
|
1227 |
elif generation_mode_data == "video":
|
1228 |
-
return [gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)]
|
1229 |
|
1230 |
-
|
1231 |
prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
|
1232 |
timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
|
1233 |
start_button.click(fn = check_parameters, inputs = [
|
@@ -1248,7 +1484,7 @@ with block:
|
|
1248 |
generation_mode.change(
|
1249 |
fn=handle_generation_mode_change,
|
1250 |
inputs=[generation_mode],
|
1251 |
-
outputs=[text_to_video_hint, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint]
|
1252 |
)
|
1253 |
|
1254 |
# Update display when the page loads
|
@@ -1256,7 +1492,7 @@ with block:
|
|
1256 |
fn=handle_generation_mode_change, inputs = [
|
1257 |
generation_mode
|
1258 |
], outputs = [
|
1259 |
-
text_to_video_hint, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint
|
1260 |
]
|
1261 |
)
|
1262 |
|
|
|
355 |
|
356 |
H, W, C = input_image.shape
|
357 |
height, width = find_nearest_bucket(H, W, resolution=resolution)
|
358 |
+
|
359 |
+
def get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram):
|
360 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
361 |
+
|
362 |
+
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
363 |
+
|
364 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
365 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
366 |
+
|
367 |
+
# VAE encoding
|
368 |
+
|
369 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
370 |
+
|
371 |
+
if not high_vram:
|
372 |
+
load_model_as_complete(vae, target_device=gpu)
|
373 |
+
|
374 |
+
start_latent = vae_encode(input_image_pt, vae)
|
375 |
+
|
376 |
+
# CLIP Vision
|
377 |
+
|
378 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
379 |
+
|
380 |
+
if not high_vram:
|
381 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
382 |
|
383 |
+
image_encoder_last_hidden_state = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder).last_hidden_state
|
384 |
+
|
385 |
+
return [start_latent, image_encoder_last_hidden_state]
|
386 |
+
|
387 |
+
[start_latent, image_encoder_last_hidden_state] = get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram)
|
388 |
|
389 |
# Dtype
|
390 |
|
|
|
443 |
section_latent_frames = latent_window_size * 2
|
444 |
overlapped_frames = latent_window_size * 4 - 3
|
445 |
|
446 |
+
real_history_latents = history_latents[:, :, -min(section_latent_frames, total_generated_latent_frames):, :, :]
|
447 |
history_pixels = soft_append_bcthw(history_pixels, vae_decode(real_history_latents, vae).cpu(), overlapped_frames)
|
448 |
|
449 |
if not high_vram:
|
|
|
524 |
stream.output_queue.push(('end', None))
|
525 |
return
|
526 |
|
527 |
+
@torch.no_grad()
|
528 |
+
def worker_last_frame(input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
|
529 |
+
def encode_prompt(prompt, n_prompt):
|
530 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
531 |
|
532 |
+
if cfg == 1:
|
533 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
534 |
+
else:
|
535 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
538 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
|
|
|
|
539 |
|
540 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
541 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
542 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
543 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
544 |
+
return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
|
545 |
|
546 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
547 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
548 |
|
549 |
+
job_id = generate_timestamp()
|
|
|
|
|
|
|
|
|
550 |
|
551 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
552 |
|
553 |
+
try:
|
554 |
+
# Clean GPU
|
555 |
+
if not high_vram:
|
556 |
+
unload_complete_models(
|
557 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
558 |
+
)
|
559 |
|
560 |
+
# Text encoding
|
561 |
|
562 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
563 |
|
564 |
+
if not high_vram:
|
565 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
566 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
567 |
|
568 |
+
prompt_parameters = []
|
|
|
|
|
569 |
|
570 |
+
for prompt_part in prompts:
|
571 |
+
prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
|
|
|
572 |
|
573 |
+
# Processing input image
|
574 |
+
|
575 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
576 |
+
|
577 |
+
H, W, C = input_image.shape
|
578 |
+
height, width = find_nearest_bucket(H, W, resolution=resolution)
|
579 |
+
|
580 |
+
def get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram):
|
581 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
582 |
+
|
583 |
+
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
584 |
+
|
585 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
586 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
587 |
+
|
588 |
+
# VAE encoding
|
589 |
+
|
590 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
591 |
+
|
592 |
+
if not high_vram:
|
593 |
+
load_model_as_complete(vae, target_device=gpu)
|
594 |
+
|
595 |
+
start_latent = vae_encode(input_image_pt, vae)
|
596 |
+
|
597 |
+
# CLIP Vision
|
598 |
+
|
599 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
600 |
+
|
601 |
+
if not high_vram:
|
602 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
603 |
+
|
604 |
+
image_encoder_last_hidden_state = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder).last_hidden_state
|
605 |
+
|
606 |
+
return [start_latent, image_encoder_last_hidden_state]
|
607 |
+
|
608 |
+
[start_latent, image_encoder_last_hidden_state] = get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram)
|
609 |
+
|
610 |
+
# Dtype
|
611 |
+
|
612 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
613 |
+
|
614 |
+
# Sampling
|
615 |
+
|
616 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
617 |
+
|
618 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
619 |
+
|
620 |
+
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
621 |
+
history_pixels = None
|
622 |
+
|
623 |
+
history_latents = torch.cat([start_latent.to(history_latents), history_latents], dim=2)
|
624 |
+
total_generated_latent_frames = 1
|
625 |
+
|
626 |
+
if enable_preview:
|
627 |
+
def callback(d):
|
628 |
+
preview = d['denoised']
|
629 |
+
preview = vae_decode_fake(preview)
|
630 |
+
|
631 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
632 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
633 |
+
|
634 |
+
if stream.input_queue.top() == 'end':
|
635 |
+
stream.output_queue.push(('end', None))
|
636 |
+
raise KeyboardInterrupt('User ends the task.')
|
637 |
+
|
638 |
+
current_step = d['i'] + 1
|
639 |
+
percentage = int(100.0 * current_step / steps)
|
640 |
+
hint = f'Sampling {current_step}/{steps}'
|
641 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30), Resolution: {height}px * {width}px. The video is being extended now ...'
|
642 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
643 |
+
return
|
644 |
+
else:
|
645 |
+
def callback(d):
|
646 |
+
return
|
647 |
+
|
648 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
649 |
+
latent_indices, clean_latent_1x_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latent_indices_start = indices.split([latent_window_size, 1, 2, 16, 1], dim=1)
|
650 |
+
clean_latent_indices = torch.cat([clean_latent_1x_indices, clean_latent_indices_start], dim=1)
|
651 |
+
|
652 |
+
def post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream):
|
653 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
654 |
+
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
655 |
+
|
656 |
+
if not high_vram:
|
657 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
658 |
+
load_model_as_complete(vae, target_device=gpu)
|
659 |
+
|
660 |
+
if history_pixels is None:
|
661 |
+
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
662 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
663 |
+
else:
|
664 |
+
section_latent_frames = latent_window_size * 2
|
665 |
+
overlapped_frames = latent_window_size * 4 - 3
|
666 |
+
|
667 |
+
real_history_latents = history_latents[:, :, :min(section_latent_frames, total_generated_latent_frames), :, :]
|
668 |
+
history_pixels = soft_append_bcthw(vae_decode(real_history_latents, vae).cpu(), history_pixels, overlapped_frames)
|
669 |
+
|
670 |
+
if not high_vram:
|
671 |
+
unload_complete_models()
|
672 |
+
|
673 |
+
if enable_preview or section_index == 0:
|
674 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
675 |
+
|
676 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
677 |
+
|
678 |
+
print(f'Decoded. Current latent shape pixel shape {history_pixels.shape}')
|
679 |
+
|
680 |
+
stream.output_queue.push(('file', output_filename))
|
681 |
+
return [total_generated_latent_frames, history_latents, history_pixels]
|
682 |
+
|
683 |
+
for section_index in range(total_latent_sections - 1, -1, -1):
|
684 |
+
if stream.input_queue.top() == 'end':
|
685 |
+
stream.output_queue.push(('end', None))
|
686 |
+
return
|
687 |
+
|
688 |
+
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
689 |
+
|
690 |
+
if len(prompt_parameters) > 0:
|
691 |
+
[llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(len(prompt_parameters) - 1)
|
692 |
+
|
693 |
+
if not high_vram:
|
694 |
+
unload_complete_models()
|
695 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
696 |
+
|
697 |
+
if use_teacache:
|
698 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
699 |
+
else:
|
700 |
+
transformer.initialize_teacache(enable_teacache=False)
|
701 |
+
|
702 |
+
clean_latents_1x, clean_latents_2x, clean_latents_4x = history_latents[:, :, :sum([1, 2, 16]), :, :].split([1, 2, 16], dim=2)
|
703 |
+
clean_latents = torch.cat([clean_latents_1x, start_latent.to(history_latents)], dim=2)
|
704 |
+
|
705 |
+
generated_latents = sample_hunyuan(
|
706 |
+
transformer=transformer,
|
707 |
+
sampler='unipc',
|
708 |
+
width=width,
|
709 |
+
height=height,
|
710 |
+
frames=latent_window_size * 4 - 3,
|
711 |
+
real_guidance_scale=cfg,
|
712 |
+
distilled_guidance_scale=gs,
|
713 |
+
guidance_rescale=rs,
|
714 |
+
# shift=3.0,
|
715 |
+
num_inference_steps=steps,
|
716 |
+
generator=rnd,
|
717 |
+
prompt_embeds=llama_vec,
|
718 |
+
prompt_embeds_mask=llama_attention_mask,
|
719 |
+
prompt_poolers=clip_l_pooler,
|
720 |
+
negative_prompt_embeds=llama_vec_n,
|
721 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
722 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
723 |
+
device=gpu,
|
724 |
+
dtype=torch.bfloat16,
|
725 |
+
image_embeddings=image_encoder_last_hidden_state,
|
726 |
+
latent_indices=latent_indices,
|
727 |
+
clean_latents=clean_latents,
|
728 |
+
clean_latent_indices=clean_latent_indices,
|
729 |
+
clean_latents_2x=clean_latents_2x,
|
730 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
731 |
+
clean_latents_4x=clean_latents_4x,
|
732 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
733 |
+
callback=callback,
|
734 |
+
)
|
735 |
+
|
736 |
+
[total_generated_latent_frames, history_latents, history_pixels] = post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream)
|
737 |
+
except:
|
738 |
+
traceback.print_exc()
|
739 |
+
|
740 |
+
if not high_vram:
|
741 |
+
unload_complete_models(
|
742 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
743 |
+
)
|
744 |
+
|
745 |
+
stream.output_queue.push(('end', None))
|
746 |
+
return
|
747 |
|
748 |
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
749 |
@spaces.GPU()
|
|
|
1013 |
stream.output_queue.push(('end', None))
|
1014 |
return
|
1015 |
|
1016 |
+
def get_duration(input_image, image_position, prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
|
1017 |
+
return total_second_length * 60 * (0.9 if use_teacache else 1.5) * (1 + ((steps - 25) / 100))
|
1018 |
+
|
1019 |
+
@spaces.GPU(duration=get_duration)
|
1020 |
+
def process(input_image,
|
1021 |
+
image_position=0,
|
1022 |
+
prompt="",
|
1023 |
+
generation_mode="image",
|
1024 |
+
n_prompt="",
|
1025 |
+
randomize_seed=True,
|
1026 |
+
seed=31337,
|
1027 |
+
resolution=640,
|
1028 |
+
total_second_length=5,
|
1029 |
+
latent_window_size=9,
|
1030 |
+
steps=25,
|
1031 |
+
cfg=1.0,
|
1032 |
+
gs=10.0,
|
1033 |
+
rs=0.0,
|
1034 |
+
gpu_memory_preservation=6,
|
1035 |
+
enable_preview=True,
|
1036 |
+
use_teacache=False,
|
1037 |
+
mp4_crf=16,
|
1038 |
+
progress = gr.Progress()
|
1039 |
+
):
|
1040 |
+
start = time.time()
|
1041 |
+
global stream
|
1042 |
+
|
1043 |
+
if torch.cuda.device_count() == 0:
|
1044 |
+
gr.Warning('Set this space to GPU config to make it work.')
|
1045 |
+
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
1046 |
+
return
|
1047 |
+
|
1048 |
+
if randomize_seed:
|
1049 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
1050 |
+
|
1051 |
+
prompts = prompt.split(";")
|
1052 |
+
|
1053 |
+
# assert input_image is not None, 'No input image!'
|
1054 |
+
if generation_mode == "text":
|
1055 |
+
default_height, default_width = 640, 640
|
1056 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
1057 |
+
print("No input image provided. Using a blank white image.")
|
1058 |
+
|
1059 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
1060 |
+
|
1061 |
+
stream = AsyncStream()
|
1062 |
+
|
1063 |
+
async_run(worker_last_frame if image_position == 100 else worker, input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf)
|
1064 |
+
|
1065 |
+
output_filename = None
|
1066 |
+
|
1067 |
+
while True:
|
1068 |
+
flag, data = stream.output_queue.next()
|
1069 |
+
|
1070 |
+
if flag == 'file':
|
1071 |
+
output_filename = data
|
1072 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
1073 |
+
|
1074 |
+
if flag == 'progress':
|
1075 |
+
preview, desc, html = data
|
1076 |
+
progress(None, desc = desc)
|
1077 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1078 |
+
|
1079 |
+
if flag == 'end':
|
1080 |
+
end = time.time()
|
1081 |
+
secondes = int(end - start)
|
1082 |
+
minutes = math.floor(secondes / 60)
|
1083 |
+
secondes = secondes - (minutes * 60)
|
1084 |
+
hours = math.floor(minutes / 60)
|
1085 |
+
minutes = minutes - (hours * 60)
|
1086 |
+
yield output_filename, gr.update(visible=False), gr.update(), "The video has been generated in " + \
|
1087 |
+
((str(hours) + " h, ") if hours != 0 else "") + \
|
1088 |
+
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
1089 |
+
str(secondes) + " sec. " + \
|
1090 |
+
"You can upscale the result with RIFE. To make all your generated scenes consistent, you can then apply a face swap on the main character.", gr.update(interactive=True), gr.update(interactive=False)
|
1091 |
+
break
|
1092 |
+
|
1093 |
def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
1094 |
return total_second_length * 60 * (0.9 if use_teacache else 2.3) * (1 + ((steps - 25) / 100))
|
1095 |
|
1096 |
# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode
|
1097 |
@spaces.GPU(duration=get_duration_video)
|
1098 |
+
def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch,
|
1099 |
+
progress = gr.Progress()):
|
1100 |
start = time.time()
|
1101 |
global stream, high_vram
|
1102 |
|
|
|
1144 |
|
1145 |
if flag == 'progress':
|
1146 |
preview, desc, html = data
|
1147 |
+
progress(None, desc = desc)
|
1148 |
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1149 |
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
|
1150 |
|
|
|
1234 |
generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
|
1235 |
text_to_video_hint = gr.HTML("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
|
1236 |
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
1237 |
+
image_position = gr.Slider(label="Image position", minimum=0, maximum=100, value=0, step=100, info='0=Video start; 100=Video end')
|
1238 |
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
1239 |
timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
|
1240 |
prompt_number = gr.Slider(label="Timed prompt number", minimum=0, maximum=1000, value=0, step=1, info='Prompts will automatically appear')
|
|
|
1309 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
1310 |
|
1311 |
# 20250506 pftq: Updated inputs to include num_clean_frames
|
1312 |
+
ips = [input_image, image_position, final_prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf]
|
1313 |
ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
1314 |
|
1315 |
gr.Examples(
|
|
|
1317 |
examples = [
|
1318 |
[
|
1319 |
"./img_examples/Example1.png", # input_image
|
1320 |
+
0, # image_position
|
1321 |
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
1322 |
"image", # generation_mode
|
1323 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
|
|
1337 |
],
|
1338 |
[
|
1339 |
"./img_examples/Example2.webp", # input_image
|
1340 |
+
0, # image_position
|
1341 |
+
"A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens",
|
1342 |
"image", # generation_mode
|
1343 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1344 |
True, # randomize_seed
|
|
|
1357 |
],
|
1358 |
[
|
1359 |
"./img_examples/Example2.webp", # input_image
|
1360 |
+
0, # image_position
|
1361 |
+
"A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens",
|
1362 |
"image", # generation_mode
|
1363 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
1364 |
True, # randomize_seed
|
|
|
1377 |
],
|
1378 |
[
|
1379 |
"./img_examples/Example3.jpg", # input_image
|
1380 |
+
0, # image_position
|
1381 |
"A boy is walking to the right, full view, full-length view, cartoon",
|
1382 |
"image", # generation_mode
|
1383 |
"Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
|
|
|
1458 |
|
1459 |
def handle_generation_mode_change(generation_mode_data):
|
1460 |
if generation_mode_data == "text":
|
1461 |
+
return [gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
|
1462 |
elif generation_mode_data == "image":
|
1463 |
+
return [gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
|
1464 |
elif generation_mode_data == "video":
|
1465 |
+
return [gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)]
|
1466 |
|
|
|
1467 |
prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
|
1468 |
timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
|
1469 |
start_button.click(fn = check_parameters, inputs = [
|
|
|
1484 |
generation_mode.change(
|
1485 |
fn=handle_generation_mode_change,
|
1486 |
inputs=[generation_mode],
|
1487 |
+
outputs=[text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint]
|
1488 |
)
|
1489 |
|
1490 |
# Update display when the page loads
|
|
|
1492 |
fn=handle_generation_mode_change, inputs = [
|
1493 |
generation_mode
|
1494 |
], outputs = [
|
1495 |
+
text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint
|
1496 |
]
|
1497 |
)
|
1498 |
|