Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Changed Code for CUDA
Browse files- Model_Class.py +8 -5
- Model_Seg.py +3 -5
- app.py +6 -3
    	
        Model_Class.py
    CHANGED
    
    | @@ -59,14 +59,15 @@ val_transforms_416x628 = Compose( | |
| 59 | 
             
                ]
         | 
| 60 | 
             
            )
         | 
| 61 |  | 
| 62 | 
            -
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 63 | 
             
            checkpoint = torch.load("classification_model.ckpt", map_location=torch.device('cpu'))
         | 
| 64 | 
            -
            model = ResNet() | 
| 65 | 
             
            model.load_state_dict(checkpoint["state_dict"])
         | 
| 66 | 
             
            model.eval()
         | 
| 67 |  | 
| 68 |  | 
| 69 | 
            -
            def load_and_classify_image(image_path):
         | 
|  | |
|  | |
| 70 | 
             
                image = val_transforms_416x628(image_path)
         | 
| 71 | 
             
                image = image.unsqueeze(0).to(device)
         | 
| 72 |  | 
| @@ -76,8 +77,10 @@ def load_and_classify_image(image_path): | |
| 76 | 
             
                    return prediction.to('cpu'), image.to('cpu')
         | 
| 77 |  | 
| 78 |  | 
| 79 | 
            -
            def make_GradCAM(image):
         | 
| 80 |  | 
|  | |
|  | |
| 81 | 
             
                model.eval()
         | 
| 82 | 
             
                target_layers = [model.model.layer4[-1]]
         | 
| 83 |  | 
| @@ -90,7 +93,7 @@ def make_GradCAM(image): | |
| 90 | 
             
                    aug_smooth=False,
         | 
| 91 | 
             
                    eigen_smooth=True,
         | 
| 92 | 
             
                )
         | 
| 93 | 
            -
                grayscale_cam = grayscale_cam.squeeze()
         | 
| 94 |  | 
| 95 | 
             
                jet = plt.colormaps.get_cmap("inferno")
         | 
| 96 | 
             
                newcolors = jet(np.linspace(0, 1, 256))
         | 
|  | |
| 59 | 
             
                ]
         | 
| 60 | 
             
            )
         | 
| 61 |  | 
|  | |
| 62 | 
             
            checkpoint = torch.load("classification_model.ckpt", map_location=torch.device('cpu'))
         | 
| 63 | 
            +
            model = ResNet()
         | 
| 64 | 
             
            model.load_state_dict(checkpoint["state_dict"])
         | 
| 65 | 
             
            model.eval()
         | 
| 66 |  | 
| 67 |  | 
| 68 | 
            +
            def load_and_classify_image(image_path, device):
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                model = model.to(device)
         | 
| 71 | 
             
                image = val_transforms_416x628(image_path)
         | 
| 72 | 
             
                image = image.unsqueeze(0).to(device)
         | 
| 73 |  | 
|  | |
| 77 | 
             
                    return prediction.to('cpu'), image.to('cpu')
         | 
| 78 |  | 
| 79 |  | 
| 80 | 
            +
            def make_GradCAM(image, device):
         | 
| 81 |  | 
| 82 | 
            +
                model = model.to(device)
         | 
| 83 | 
            +
                image = image.to(device)
         | 
| 84 | 
             
                model.eval()
         | 
| 85 | 
             
                target_layers = [model.model.layer4[-1]]
         | 
| 86 |  | 
|  | |
| 93 | 
             
                    aug_smooth=False,
         | 
| 94 | 
             
                    eigen_smooth=True,
         | 
| 95 | 
             
                )
         | 
| 96 | 
            +
                grayscale_cam = grayscale_cam.to('cpu').squeeze()
         | 
| 97 |  | 
| 98 | 
             
                jet = plt.colormaps.get_cmap("inferno")
         | 
| 99 | 
             
                newcolors = jet(np.linspace(0, 1, 256))
         | 
    	
        Model_Seg.py
    CHANGED
    
    | @@ -39,10 +39,8 @@ model = UNet( | |
| 39 | 
             
                num_res_units=3
         | 
| 40 | 
             
            )
         | 
| 41 |  | 
| 42 | 
            -
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 43 | 
            -
             | 
| 44 | 
             
            checkpoint_path = 'segmentation_model.pt'
         | 
| 45 | 
            -
            checkpoint = torch.load(checkpoint_path, map_location= | 
| 46 | 
             
            assert model.state_dict().keys() == checkpoint['network'].keys(), "Model and checkpoint keys do not match"
         | 
| 47 |  | 
| 48 | 
             
            model.load_state_dict(checkpoint['network'])
         | 
| @@ -73,9 +71,9 @@ post_transforms = Compose([ | |
| 73 |  | 
| 74 |  | 
| 75 |  | 
| 76 | 
            -
            def load_and_segment_image(input_image_path):
         | 
| 77 |  | 
| 78 | 
            -
                
         | 
| 79 | 
             
                image_tensor = pre_transforms(input_image_path)
         | 
| 80 | 
             
                image_tensor = image_tensor.unsqueeze(0).to(device)
         | 
| 81 |  | 
|  | |
| 39 | 
             
                num_res_units=3
         | 
| 40 | 
             
            )
         | 
| 41 |  | 
|  | |
|  | |
| 42 | 
             
            checkpoint_path = 'segmentation_model.pt'
         | 
| 43 | 
            +
            checkpoint = torch.load(checkpoint_path, map_location='cpu')  
         | 
| 44 | 
             
            assert model.state_dict().keys() == checkpoint['network'].keys(), "Model and checkpoint keys do not match"
         | 
| 45 |  | 
| 46 | 
             
            model.load_state_dict(checkpoint['network'])
         | 
|  | |
| 71 |  | 
| 72 |  | 
| 73 |  | 
| 74 | 
            +
            def load_and_segment_image(input_image_path, device):
         | 
| 75 |  | 
| 76 | 
            +
                model = model.to(device)
         | 
| 77 | 
             
                image_tensor = pre_transforms(input_image_path)
         | 
| 78 | 
             
                image_tensor = image_tensor.unsqueeze(0).to(device)
         | 
| 79 |  | 
    	
        app.py
    CHANGED
    
    | @@ -7,6 +7,9 @@ import SimpleITK as sitk | |
| 7 | 
             
            import torch
         | 
| 8 | 
             
            from numpy import uint8
         | 
| 9 | 
             
            import spaces
         | 
|  | |
|  | |
|  | |
| 10 | 
             
            image_base64 = utils.image_to_base64("anatomy_aware_pipeline.png")
         | 
| 11 | 
             
            article_html = f"<img src='data:image/png;base64,{image_base64}' alt='Anatomical pipeline illustration' style='width:100%;'>"
         | 
| 12 |  | 
| @@ -64,7 +67,7 @@ def predict_image(input_image, input_file): | |
| 64 | 
             
                else:
         | 
| 65 | 
             
                    return None , None , "Please input an image before pressing run" , None , None
         | 
| 66 |  | 
| 67 | 
            -
                image_mask = Model_Seg.load_and_segment_image(image_path)
         | 
| 68 |  | 
| 69 | 
             
                overlay_image_np, original_image_np = utils.overlay_mask(image_path, image_mask)
         | 
| 70 |  | 
| @@ -75,10 +78,10 @@ def predict_image(input_image, input_file): | |
| 75 | 
             
                cropped_boxed_array = sitk.GetArrayFromImage(cropped_boxed_im)
         | 
| 76 | 
             
                cropped_boxed_array_disp = cropped_boxed_array.squeeze()
         | 
| 77 | 
             
                cropped_boxed_tensor = torch.Tensor(cropped_boxed_array)
         | 
| 78 | 
            -
                prediction, image_transformed = Model_Class.load_and_classify_image(cropped_boxed_tensor)
         | 
| 79 |  | 
| 80 |  | 
| 81 | 
            -
                gradcam = Model_Class.make_GradCAM(image_transformed)
         | 
| 82 |  | 
| 83 | 
             
                nr_axSpA_prob = float(prediction[0].item())
         | 
| 84 | 
             
                r_axSpA_prob = float(prediction[1].item())
         | 
|  | |
| 7 | 
             
            import torch
         | 
| 8 | 
             
            from numpy import uint8
         | 
| 9 | 
             
            import spaces
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 12 | 
            +
             | 
| 13 | 
             
            image_base64 = utils.image_to_base64("anatomy_aware_pipeline.png")
         | 
| 14 | 
             
            article_html = f"<img src='data:image/png;base64,{image_base64}' alt='Anatomical pipeline illustration' style='width:100%;'>"
         | 
| 15 |  | 
|  | |
| 67 | 
             
                else:
         | 
| 68 | 
             
                    return None , None , "Please input an image before pressing run" , None , None
         | 
| 69 |  | 
| 70 | 
            +
                image_mask = Model_Seg.load_and_segment_image(image_path, device)
         | 
| 71 |  | 
| 72 | 
             
                overlay_image_np, original_image_np = utils.overlay_mask(image_path, image_mask)
         | 
| 73 |  | 
|  | |
| 78 | 
             
                cropped_boxed_array = sitk.GetArrayFromImage(cropped_boxed_im)
         | 
| 79 | 
             
                cropped_boxed_array_disp = cropped_boxed_array.squeeze()
         | 
| 80 | 
             
                cropped_boxed_tensor = torch.Tensor(cropped_boxed_array)
         | 
| 81 | 
            +
                prediction, image_transformed = Model_Class.load_and_classify_image(cropped_boxed_tensor, device)
         | 
| 82 |  | 
| 83 |  | 
| 84 | 
            +
                gradcam = Model_Class.make_GradCAM(image_transformed, device)
         | 
| 85 |  | 
| 86 | 
             
                nr_axSpA_prob = float(prediction[0].item())
         | 
| 87 | 
             
                r_axSpA_prob = float(prediction[1].item())
         |