import gradio as gr from huggingface_hub import InferenceClient import random,os import numpy as np MAX_SEED = np.iinfo(np.int32).max model_list = ["Qwen/Qwen-Image", "black-forest-labs/FLUX.1-dev"] client = InferenceClient( provider="auto", api_key = os.getenv("HF_API_KEY") ) def infer( prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) # Hugging Face InferenceClient doesn't use seed directly, but we keep it for display image = client.text_to_image(prompt, model=model_name) return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template (Hugging Face InferenceClient)") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): model_name = gr.Dropdown( label="Model", choices=model_list, value=model_list[0], ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, model_name, seed, randomize_seed], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()