File size: 3,730 Bytes
4cc501e
 
 
 
 
 
 
0b2ae81
4cc501e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d412d4
4cc501e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d412d4
4cc501e
 
1d412d4
4cc501e
 
 
 
 
 
 
 
 
 
 
 
1d412d4
4cc501e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d412d4
4cc501e
 
 
 
 
 
 
1d412d4
4cc501e
 
 
 
 
 
 
 
1d412d4
4cc501e
 
 
 
 
 
 
1d412d4
4cc501e
 
 
1d412d4
 
 
 
 
 
 
 
 
 
 
 
4cc501e
 
1d412d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import numpy as np
import random
import os
from huggingface_hub import InferenceClient
 
# Load HF Inference Client
client = InferenceClient(api_key=os.environ["HF_API_KEY"])
 
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
 
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
 
    # Call Hugging Face Inference API
    image = client.text_to_image(
        prompt=prompt,
        model="stabilityai/sdxl-turbo",  # or "Qwen/Qwen-Image"
        negative_prompt=negative_prompt if negative_prompt else None,
        size=f"{width}x{height}"
    )
    return image, seed
 
 
examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]
 
css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""
 
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Text-to-Image Gradio Template (Hugging Face Inference API)")
 
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
 
            run_button = gr.Button("Run", scale=0, variant="primary")
 
        result = gr.Image(label="Result", show_label=False)
 
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
 
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
 
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
 
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
 
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
 
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,
                )
 
        gr.Examples(examples=examples, inputs=[prompt])
 
        # Correct event bindings
        run_button.click(
            fn=infer,
            inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
            outputs=[result, seed],
        )
        prompt.submit(
            fn=infer,
            inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
            outputs=[result, seed],
        )
 
if __name__ == "__main__":
    demo.launch(share=True)  # removed ssr_mode