Spaces:
Running
Running
U1020040
commited on
Commit
·
0fb9984
1
Parent(s):
4cffc64
example, color, contrast
Browse files- HEADER.md +4 -1
- app.py +73 -12
- examples/crc100k_val.jpg +0 -0
- examples/hemit.jpg +0 -0
- examples/orion_test_1.jpg +0 -0
- examples/orion_test_2.jpg +0 -0
- examples/orion_test_3.jpg +0 -0
- examples/orion_test_4.jpg +0 -0
- examples/orion_test_5.jpg +0 -0
- examples/tcga.jpg +0 -0
HEADER.md
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
# MIPHEI-ViT Demo: 16-channel mIF Prediction
|
2 |
|
3 |
<p align="center">
|
|
|
|
|
|
|
4 |
<a href="https://huggingface.co/Estabousi/MIPHEI-vit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
5 |
<img src="https://img.shields.io/badge/🤗 Model-MIPHEI--ViT-lightgrey?logo=huggingface" height="25">
|
6 |
</a>
|
@@ -17,7 +20,7 @@ The model returns **16 grayscale images**, each representing a predicted mIF mar
|
|
17 |
|
18 |
---
|
19 |
|
20 |
-
Try it with low-zoom screenshots from public datasets:
|
21 |
|
22 |
**ORION (in-domain test set):**
|
23 |
- [CRC2](https://labsyspharm.github.io/orion-crc/minerva/P37_S30-CRC02/index.html#s=0&w=0&g=5&m=-1&a=-100_-100&v=1.0673_0.6057_0.5&o=-100_-100_1_1&p=Q)
|
|
|
1 |
# MIPHEI-ViT Demo: 16-channel mIF Prediction
|
2 |
|
3 |
<p align="center">
|
4 |
+
<a title="arXiv" href="https://arxiv.org/abs/2505.10294" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
5 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
6 |
+
</a>
|
7 |
<a href="https://huggingface.co/Estabousi/MIPHEI-vit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
8 |
<img src="https://img.shields.io/badge/🤗 Model-MIPHEI--ViT-lightgrey?logo=huggingface" height="25">
|
9 |
</a>
|
|
|
20 |
|
21 |
---
|
22 |
|
23 |
+
Try it with **provided examples** or low-zoom screenshots from public datasets:
|
24 |
|
25 |
**ORION (in-domain test set):**
|
26 |
- [CRC2](https://labsyspharm.github.io/orion-crc/minerva/P37_S30-CRC02/index.html#s=0&w=0&g=5&m=-1&a=-100_-100&v=1.0673_0.6057_0.5&o=-100_-100_1_1&p=Q)
|
app.py
CHANGED
@@ -18,25 +18,63 @@ with open(config_path, "r") as f:
|
|
18 |
config = json.load(f)
|
19 |
channel_names = config["targ_channel_names"]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def preprocess(image):
|
22 |
image = image.convert("RGB").resize((256, 256))
|
23 |
tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255
|
24 |
tensor = (tensor - mean) / std
|
25 |
return tensor.unsqueeze(0) # [1, 3, H, W]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def predict(image):
|
28 |
input_tensor = preprocess(image)
|
29 |
with torch.inference_mode():
|
30 |
output = model(input_tensor)[0] # [16, H, W]
|
31 |
output = (output.clamp(-0.9, 0.9) + 0.9) / 1.8
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
# Convert each mIF channel to grayscale PIL image
|
35 |
channel_imgs = []
|
36 |
-
for i in range(
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
# Return predicted 16 channels
|
42 |
return channel_imgs
|
@@ -47,14 +85,37 @@ with open("HEADER.md", "r", encoding="utf-8") as f:
|
|
47 |
|
48 |
# Build interface using Blocks
|
49 |
with gr.Blocks() as demo:
|
|
|
50 |
gr.Markdown(HEADER_MD)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
demo.launch()
|
|
|
18 |
config = json.load(f)
|
19 |
channel_names = config["targ_channel_names"]
|
20 |
|
21 |
+
|
22 |
+
channel_colors = {
|
23 |
+
"Hoechst": (0, 0, 255), # Blue (DAPI, nuclear stain)
|
24 |
+
"CD31": (0, 255, 255), # Cyan (endothelial)
|
25 |
+
"CD45": (255, 255, 0), # Yellow (leukocyte common antigen)
|
26 |
+
"CD68": (255, 165, 0), # Orange (macrophages)
|
27 |
+
"CD4": (255, 0, 0), # Red (helper T cells)
|
28 |
+
"FOXP3": (138, 43, 226), # Purple/Blue-Violet (regulatory T cells)
|
29 |
+
"CD8a": (303, 100, 100), # Green (cytotoxic T cells)
|
30 |
+
"CD45RO": (255, 105, 180), # Hot Pink (memory T cells)
|
31 |
+
"CD20": (0, 191, 255), # Deep Sky Blue (B cells)
|
32 |
+
"PD-L1": (255, 0, 255), # Magenta
|
33 |
+
"CD3e": (95, 95, 94), # Crimson (T cells)
|
34 |
+
"CD163": (184, 134, 11), # Dark Goldenrod (M2 macrophages)
|
35 |
+
"E-cadherin": (242, 12, 43), # Spring Green (epithelial marker)
|
36 |
+
"Ki67": (255, 20, 147), # Deep Pink (proliferation marker)
|
37 |
+
"Pan-CK": (255, 0, 0), # Red (epithelial/carcinoma)
|
38 |
+
"SMA": (0, 255, 0), # Green (smooth muscle, myofibroblasts)
|
39 |
+
}
|
40 |
+
|
41 |
+
# Contrast correction factors per channel (255 for Hoechst, 150 otherwise)
|
42 |
+
default_contrast = 150.0
|
43 |
+
correction_map = {"Hoechst": 255.0, "CD8a": 100, "CD31": 100, "CD4": 100, "CD68": 100, "FOXP3": 100}
|
44 |
+
max_contrast_correction_value = torch.tensor([
|
45 |
+
correction_map.get(name, default_contrast) / 255 for name in channel_names
|
46 |
+
]).reshape(len(channel_names), 1, 1)
|
47 |
+
|
48 |
+
|
49 |
def preprocess(image):
|
50 |
image = image.convert("RGB").resize((256, 256))
|
51 |
tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255
|
52 |
tensor = (tensor - mean) / std
|
53 |
return tensor.unsqueeze(0) # [1, 3, H, W]
|
54 |
|
55 |
+
def apply_color_map(gray_img, rgb_color):
|
56 |
+
"""Map a grayscale image to RGB using a fixed pseudocolor."""
|
57 |
+
gray = np.asarray(gray_img).astype(np.float32) / 255.0
|
58 |
+
rgb = np.stack([gray * rgb_color[i] for i in range(3)], axis=-1).astype(np.uint8)
|
59 |
+
return Image.fromarray(rgb, mode='RGB')
|
60 |
+
|
61 |
def predict(image):
|
62 |
input_tensor = preprocess(image)
|
63 |
with torch.inference_mode():
|
64 |
output = model(input_tensor)[0] # [16, H, W]
|
65 |
output = (output.clamp(-0.9, 0.9) + 0.9) / 1.8
|
66 |
+
output_vis = output / max_contrast_correction_value.to(output.device).clamp(min=1e-6)
|
67 |
+
output_vis = output_vis.clamp(0, 1) * 255
|
68 |
+
output_vis = np.uint8(output_vis.cpu().numpy())
|
69 |
+
output = output.cpu().numpy()
|
70 |
|
71 |
# Convert each mIF channel to grayscale PIL image
|
72 |
channel_imgs = []
|
73 |
+
for i in range(output_vis.shape[0]):
|
74 |
+
ch_name = channel_names[i]
|
75 |
+
ch_gray = Image.fromarray(output_vis[i], mode='L')
|
76 |
+
ch_colored = apply_color_map(ch_gray, channel_colors[ch_name])
|
77 |
+
channel_imgs.append(ch_colored)
|
78 |
|
79 |
# Return predicted 16 channels
|
80 |
return channel_imgs
|
|
|
85 |
|
86 |
# Build interface using Blocks
|
87 |
with gr.Blocks() as demo:
|
88 |
+
|
89 |
gr.Markdown(HEADER_MD)
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
# LEFT: input + examples + button
|
93 |
+
with gr.Column(scale=0.5):
|
94 |
+
input_image = gr.Image(type="pil", label="Input H&E")
|
95 |
+
run_btn = gr.Button("Run Prediction")
|
96 |
+
gr.Examples(
|
97 |
+
examples=[
|
98 |
+
["examples/crc100k_val.jpg"],
|
99 |
+
["examples/orion_test_1.jpg"],
|
100 |
+
["examples/orion_test_2.jpg"],
|
101 |
+
["examples/orion_test_3.jpg"],
|
102 |
+
["examples/orion_test_4.jpg"],
|
103 |
+
["examples/orion_test_5.jpg"],
|
104 |
+
["examples/tcga.jpg"],
|
105 |
+
["examples/hemit.jpg"],
|
106 |
+
],
|
107 |
+
inputs=[input_image],
|
108 |
+
label="Example H&E tile (TCGA, ORION Test, CRC100K, HEMIT)"
|
109 |
+
)
|
110 |
+
|
111 |
+
# RIGHT: outputs
|
112 |
+
with gr.Column():
|
113 |
+
output_images = [
|
114 |
+
gr.Image(type="pil", label=f"mIF Channel {channel_names[i]}")
|
115 |
+
for i in range(16)
|
116 |
+
]
|
117 |
+
|
118 |
+
run_btn.click(fn=predict, inputs=input_image, outputs=output_images)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
demo.launch()
|
examples/crc100k_val.jpg
ADDED
![]() |
examples/hemit.jpg
ADDED
![]() |
examples/orion_test_1.jpg
ADDED
![]() |
examples/orion_test_2.jpg
ADDED
![]() |
examples/orion_test_3.jpg
ADDED
![]() |
examples/orion_test_4.jpg
ADDED
![]() |
examples/orion_test_5.jpg
ADDED
![]() |
examples/tcga.jpg
ADDED
![]() |