from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq from datasets import load_dataset, load_from_disk from evaluate import load import torch import os # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="openaccess-ai-collective/minotaur-15b") # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("openaccess-ai-collective/minotaur-15b") model = AutoModelForCausalLM.from_pretrained("openaccess-ai-collective/minotaur-15b") model_id = "your_model_id" # Replace with your model ID tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) def generate_answer(question, file_path): if os.path.exists(file_path): # Load data from file if file_path.endswith(".csv"): data = pd.read_csv(file_path) elif file_path.endswith(".json"): data = json.load(open(file_path)) else: data = open(file_path, "r").read() else: data = "" prompt = f""" Answer the question based on the provided context: Question: {question} Context: {data} Answer: """ inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs.input_ids.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) attention_mask = inputs.attention_mask.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) output = model.generate(input_ids=input_ids, attention_mask=attention_mask) answer = tokenizer.decode(output[0], skip_special_tokens=True) return answer def main(): question = input("Enter your question: ") file_path = input("Enter the file path (optional): ") answer = generate_answer(question, file_path) print(f"Answer: {answer}") if __name__ == "__main__": main()