import pybullet from pybullet_utils.bullet_client import BulletClient import pybullet_data import threading from time import sleep import numpy as np import os from consts import BOUNDS, COLORS, PIXEL_SIZE, CORNER_POS from shapely.geometry import box import random # Gripper (Robotiq 2F85) code class Robotiq2F85: """Gripper handling for Robotiq 2F85.""" def __init__(self, robot, tool, p): self.robot = robot self.tool = tool self._p = p pos = [0.1339999999999999, -0.49199999999872496, 0.5] rot = self._p.getQuaternionFromEuler([np.pi, 0, np.pi]) urdf = 'robotiq_2f_85/robotiq_2f_85.urdf' self.body = self._p.loadURDF(urdf, pos, rot) self.n_joints = self._p.getNumJoints(self.body) self.activated = False # Connect gripper base to robot tool. self._p.createConstraint(self.robot, tool, self.body, 0, jointType=self._p.JOINT_FIXED, jointAxis=[0, 0, 0], parentFramePosition=[0, 0, 0], childFramePosition=[0, 0, -0.07], childFrameOrientation=self._p.getQuaternionFromEuler([0, 0, np.pi / 2])) # Set friction coefficients for gripper fingers. for i in range(self._p.getNumJoints(self.body)): self._p.changeDynamics(self.body, i, lateralFriction=10.0, spinningFriction=1.0, rollingFriction=1.0, frictionAnchor=True) # Start thread to handle additional gripper constraints. self.motor_joint = 1 self.constraints_thread = threading.Thread(target=self.step) self.constraints_thread.daemon = True self.constraints_thread.start() # Control joint positions by enforcing hard contraints on gripper behavior. # Set one joint as the open/close motor joint (other joints should mimic). def step(self): while True: try: currj = [self._p.getJointState(self.body, i)[0] for i in range(self.n_joints)] indj = [6, 3, 8, 5, 10] targj = [currj[1], -currj[1], -currj[1], currj[1], currj[1]] self._p.setJointMotorControlArray(self.body, indj, self._p.POSITION_CONTROL, targj, positionGains=np.ones(5)) except: return sleep(0.001) # Close gripper fingers. def activate(self): self._p.setJointMotorControl2(self.body, self.motor_joint, self._p.VELOCITY_CONTROL, targetVelocity=1, force=10) self.activated = True # Open gripper fingers. def release(self): self._p.setJointMotorControl2(self.body, self.motor_joint, self._p.VELOCITY_CONTROL, targetVelocity=-1, force=10) self.activated = False # If activated and object in gripper: check object contact. # If activated and nothing in gripper: check gripper contact. # If released: check proximity to surface (disabled). def detect_contact(self): obj, _, ray_frac = self.check_proximity() if self.activated: empty = self.grasp_width() < 0.01 cbody = self.body if empty else obj if obj == self.body or obj == 0: return False return self.external_contact(cbody) # else: # return ray_frac < 0.14 or self.external_contact() # Return if body is in contact with something other than gripper def external_contact(self, body=None): if body is None: body = self.body pts = self._p.getContactPoints(bodyA=body) pts = [pt for pt in pts if pt[2] != self.body] return len(pts) > 0 # pylint: disable=g-explicit-length-test def check_grasp(self): while self.moving(): sleep(0.001) success = self.grasp_width() > 0.01 return success def grasp_width(self): lpad = np.array(self._p.getLinkState(self.body, 4)[0]) rpad = np.array(self._p.getLinkState(self.body, 9)[0]) dist = np.linalg.norm(lpad - rpad) - 0.047813 return dist def check_proximity(self): ee_pos = np.array(self._p.getLinkState(self.robot, self.tool)[0]) tool_pos = np.array(self._p.getLinkState(self.body, 0)[0]) vec = (tool_pos - ee_pos) / np.linalg.norm((tool_pos - ee_pos)) ee_targ = ee_pos + vec ray_data = self._p.rayTest(ee_pos, ee_targ)[0] obj, link, ray_frac = ray_data[0], ray_data[1], ray_data[2] return obj, link, ray_frac # Gym-style environment code class PickPlaceEnv(): def __init__(self, render=False, high_res=False, high_frame_rate=False): self.dt = 1/480 self.sim_step = 0 # Configure and start PyBullet # self._p = pybullet.connect(pybullet.DIRECT) self._p = BulletClient(connection_mode=pybullet.DIRECT) self._p.configureDebugVisualizer(self._p.COV_ENABLE_GUI, 0) self._p.setPhysicsEngineParameter(enableFileCaching=0) assets_path = os.path.dirname(os.path.abspath("")) self._p.setAdditionalSearchPath(assets_path) self._p.setAdditionalSearchPath(pybullet_data.getDataPath()) self._p.setTimeStep(self.dt) self.home_joints = (np.pi / 2, -np.pi / 2, np.pi / 2, -np.pi / 2, 3 * np.pi / 2, 0) # Joint angles: (J0, J1, J2, J3, J4, J5). self.home_ee_euler = (np.pi, 0, np.pi) # (RX, RY, RZ) rotation in Euler angles. self.ee_link_id = 9 # Link ID of UR5 end effector. self.tip_link_id = 10 # Link ID of gripper finger tips. self.gripper = None self.render = render self.high_res = high_res self.high_frame_rate = high_frame_rate def reset(self, object_list): self._p.resetSimulation(self._p.RESET_USE_DEFORMABLE_WORLD) self._p.setGravity(0, 0, -9.8) self.cache_video = [] # Temporarily disable rendering to load URDFs faster. self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 0) # Add robot. self._p.loadURDF("plane.urdf", [0, 0, -0.001]) self.robot_id = self._p.loadURDF("ur5e/ur5e.urdf", [0, 0, 0], flags=self._p.URDF_USE_MATERIAL_COLORS_FROM_MTL) self.ghost_id = self._p.loadURDF("ur5e/ur5e.urdf", [0, 0, -10]) # For forward kinematics. self.joint_ids = [self._p.getJointInfo(self.robot_id, i) for i in range(self._p.getNumJoints(self.robot_id))] self.joint_ids = [j[0] for j in self.joint_ids if j[2] == self._p.JOINT_REVOLUTE] # Move robot to home configuration. for i in range(len(self.joint_ids)): self._p.resetJointState(self.robot_id, self.joint_ids[i], self.home_joints[i]) # Add gripper. if self.gripper is not None: while self.gripper.constraints_thread.is_alive(): self.constraints_thread_active = False self.gripper = Robotiq2F85(self.robot_id, self.ee_link_id, self._p) self.gripper.release() # Add workspace. plane_shape = self._p.createCollisionShape(self._p.GEOM_BOX, halfExtents=[0.3, 0.3, 0.001]) plane_visual = self._p.createVisualShape(self._p.GEOM_BOX, halfExtents=[0.3, 0.3, 0.001]) plane_id = self._p.createMultiBody(0, plane_shape, plane_visual, basePosition=[0, -0.5, 0]) self._p.changeVisualShape(plane_id, -1, rgbaColor=[0.2, 0.2, 0.2, 1.0]) # Load objects according to config. self.object_list = object_list self.obj_name_to_id = {} obj_xyz = np.zeros((0, 3)) for obj_name in object_list: if ('block' in obj_name) or ('bowl' in obj_name): # Get random position 15cm+ from other objects. while True: rand_x = np.random.uniform(BOUNDS[0, 0] + 0.1, BOUNDS[0, 1] - 0.1) rand_y = np.random.uniform(BOUNDS[1, 0] + 0.1, BOUNDS[1, 1] - 0.1) rand_xyz = np.float32([rand_x, rand_y, 0.03]).reshape(1, 3) if len(obj_xyz) == 0: obj_xyz = np.concatenate((obj_xyz, rand_xyz), axis=0) break else: nn_dist = np.min(np.linalg.norm(obj_xyz - rand_xyz, axis=1)).squeeze() if nn_dist > 0.15: obj_xyz = np.concatenate((obj_xyz, rand_xyz), axis=0) break object_color = COLORS[obj_name.split(' ')[0]] object_type = obj_name.split(' ')[1] object_position = rand_xyz.squeeze() if object_type == 'block': object_shape = self._p.createCollisionShape(self._p.GEOM_BOX, halfExtents=[0.02, 0.02, 0.02]) object_visual = self._p.createVisualShape(self._p.GEOM_BOX, halfExtents=[0.02, 0.02, 0.02]) object_id = self._p.createMultiBody(0.01, object_shape, object_visual, basePosition=object_position) elif object_type == 'bowl': object_position[2] = 0 object_id = self._p.loadURDF("bowl/bowl.urdf", object_position, useFixedBase=1) self._p.changeVisualShape(object_id, -1, rgbaColor=object_color) self.obj_name_to_id[obj_name] = object_id # Re-enable rendering. self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 1) for _ in range(200): self._p.stepSimulation() # record object positions at reset self.init_pos = {name: self.get_obj_pos(name) for name in object_list} return self.get_observation() def servoj(self, joints): """Move to target joint positions with position control.""" self._p.setJointMotorControlArray( bodyIndex=self.robot_id, jointIndices=self.joint_ids, controlMode=self._p.POSITION_CONTROL, targetPositions=joints, positionGains=[0.01]*6) def movep(self, position): """Move to target end effector position.""" joints = self._p.calculateInverseKinematics( bodyUniqueId=self.robot_id, endEffectorLinkIndex=self.tip_link_id, targetPosition=position, targetOrientation=self._p.getQuaternionFromEuler(self.home_ee_euler), maxNumIterations=100) self.servoj(joints) def get_ee_pos(self): ee_xyz = np.float32(self._p.getLinkState(self.robot_id, self.tip_link_id)[0]) return ee_xyz def step(self, action=None): """Do pick and place motion primitive.""" pick_pos, place_pos = action['pick'].copy(), action['place'].copy() # Set fixed primitive z-heights. hover_xyz = np.float32([pick_pos[0], pick_pos[1], 0.2]) if pick_pos.shape[-1] == 2: pick_xyz = np.append(pick_pos, 0.025) else: pick_xyz = pick_pos pick_xyz[2] = 0.025 if place_pos.shape[-1] == 2: place_xyz = np.append(place_pos, 0.15) else: place_xyz = place_pos place_xyz[2] = 0.15 # Move to object. ee_xyz = self.get_ee_pos() while np.linalg.norm(hover_xyz - ee_xyz) > 0.01: self.movep(hover_xyz) self.step_sim_and_render() ee_xyz = self.get_ee_pos() while np.linalg.norm(pick_xyz - ee_xyz) > 0.01: self.movep(pick_xyz) self.step_sim_and_render() ee_xyz = self.get_ee_pos() # Pick up object. self.gripper.activate() for _ in range(240): self.step_sim_and_render() while np.linalg.norm(hover_xyz - ee_xyz) > 0.01: self.movep(hover_xyz) self.step_sim_and_render() ee_xyz = self.get_ee_pos() for _ in range(50): self.step_sim_and_render() # Move to place location. while np.linalg.norm(place_xyz - ee_xyz) > 0.01: self.movep(place_xyz) self.step_sim_and_render() ee_xyz = self.get_ee_pos() # Place down object. while (not self.gripper.detect_contact()) and (place_xyz[2] > 0.03): place_xyz[2] -= 0.001 self.movep(place_xyz) for _ in range(3): self.step_sim_and_render() self.gripper.release() for _ in range(240): self.step_sim_and_render() place_xyz[2] = 0.2 ee_xyz = self.get_ee_pos() while np.linalg.norm(place_xyz - ee_xyz) > 0.01: self.movep(place_xyz) self.step_sim_and_render() ee_xyz = self.get_ee_pos() place_xyz = np.float32([0, -0.5, 0.2]) while np.linalg.norm(place_xyz - ee_xyz) > 0.01: self.movep(place_xyz) self.step_sim_and_render() ee_xyz = self.get_ee_pos() observation = self.get_observation() reward = self.get_reward() done = False info = {} return observation, reward, done, info def set_alpha_transparency(self, alpha: float) -> None: for id in range(20): visual_shape_data = self._p.getVisualShapeData(id) for i in range(len(visual_shape_data)): object_id, link_index, _, _, _, _, _, rgba_color = visual_shape_data[i] rgba_color = list(rgba_color[0:3]) + [alpha] self._p.changeVisualShape( self.robot_id, linkIndex=i, rgbaColor=rgba_color) self._p.changeVisualShape( self.gripper.body, linkIndex=i, rgbaColor=rgba_color) def step_sim_and_render(self): self._p.stepSimulation() self.sim_step += 1 interval = 40 if self.high_frame_rate else 60 # Render current image at 8 FPS. if self.sim_step % interval == 0 and self.render: self.cache_video.append(self.get_camera_image()) def get_camera_image(self): if not self.high_res: image_size = (240, 240) intrinsics = (120., 0, 120., 0, 120., 120., 0, 0, 1) else: image_size=(360, 360) intrinsics=(180., 0, 180., 0, 180., 180., 0, 0, 1) color, _, _, _, _ = self.render_image(image_size, intrinsics) return color def get_reward(self): return None def get_observation(self): observation = {} # Render current image. color, depth, position, orientation, intrinsics = self.render_image() # Get heightmaps and colormaps. points = self.get_pointcloud(depth, intrinsics) position = np.float32(position).reshape(3, 1) rotation = self._p.getMatrixFromQuaternion(orientation) rotation = np.float32(rotation).reshape(3, 3) transform = np.eye(4) transform[:3, :] = np.hstack((rotation, position)) points = self.transform_pointcloud(points, transform) heightmap, colormap, xyzmap = self.get_heightmap(points, color, BOUNDS, PIXEL_SIZE) observation["image"] = colormap observation["xyzmap"] = xyzmap return observation def render_image(self, image_size=(720, 720), intrinsics=(360., 0, 360., 0, 360., 360., 0, 0, 1)): # Camera parameters. position = (0, -0.85, 0.4) orientation = (np.pi / 4 + np.pi / 48, np.pi, np.pi) orientation = self._p.getQuaternionFromEuler(orientation) zrange = (0.01, 10.) noise=True # OpenGL camera settings. lookdir = np.float32([0, 0, 1]).reshape(3, 1) updir = np.float32([0, -1, 0]).reshape(3, 1) rotation = self._p.getMatrixFromQuaternion(orientation) rotm = np.float32(rotation).reshape(3, 3) lookdir = (rotm @ lookdir).reshape(-1) updir = (rotm @ updir).reshape(-1) lookat = position + lookdir focal_len = intrinsics[0] znear, zfar = (0.01, 10.) viewm = self._p.computeViewMatrix(position, lookat, updir) fovh = (image_size[0] / 2) / focal_len fovh = 180 * np.arctan(fovh) * 2 / np.pi # Notes: 1) FOV is vertical FOV 2) aspect must be float aspect_ratio = image_size[1] / image_size[0] projm = self._p.computeProjectionMatrixFOV(fovh, aspect_ratio, znear, zfar) # Render with OpenGL camera settings. _, _, color, depth, segm = self._p.getCameraImage( width=image_size[1], height=image_size[0], viewMatrix=viewm, projectionMatrix=projm, shadow=1, flags=self._p.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX, renderer=self._p.ER_BULLET_HARDWARE_OPENGL) # Get color image. color_image_size = (image_size[0], image_size[1], 4) color = np.array(color, dtype=np.uint8).reshape(color_image_size) color = color[:, :, :3] # remove alpha channel if noise: color = np.int32(color) color += np.int32(np.random.normal(0, 3, color.shape)) color = np.uint8(np.clip(color, 0, 255)) # Get depth image. depth_image_size = (image_size[0], image_size[1]) zbuffer = np.float32(depth).reshape(depth_image_size) depth = (zfar + znear - (2 * zbuffer - 1) * (zfar - znear)) depth = (2 * znear * zfar) / depth if noise: depth += np.random.normal(0, 0.003, depth.shape) intrinsics = np.float32(intrinsics).reshape(3, 3) return color, depth, position, orientation, intrinsics def get_pointcloud(self, depth, intrinsics): """Get 3D pointcloud from perspective depth image. Args: depth: HxW float array of perspective depth in meters. intrinsics: 3x3 float array of camera intrinsics matrix. Returns: points: HxWx3 float array of 3D points in camera coordinates. """ height, width = depth.shape xlin = np.linspace(0, width - 1, width) ylin = np.linspace(0, height - 1, height) px, py = np.meshgrid(xlin, ylin) px = (px - intrinsics[0, 2]) * (depth / intrinsics[0, 0]) py = (py - intrinsics[1, 2]) * (depth / intrinsics[1, 1]) points = np.float32([px, py, depth]).transpose(1, 2, 0) return points def transform_pointcloud(self, points, transform): """Apply rigid transformation to 3D pointcloud. Args: points: HxWx3 float array of 3D points in camera coordinates. transform: 4x4 float array representing a rigid transformation matrix. Returns: points: HxWx3 float array of transformed 3D points. """ padding = ((0, 0), (0, 0), (0, 1)) homogen_points = np.pad(points.copy(), padding, 'constant', constant_values=1) for i in range(3): points[Ellipsis, i] = np.sum(transform[i, :] * homogen_points, axis=-1) return points def get_heightmap(self, points, colors, bounds, pixel_size): """Get top-down (z-axis) orthographic heightmap image from 3D pointcloud. Args: points: HxWx3 float array of 3D points in world coordinates. colors: HxWx3 uint8 array of values in range 0-255 aligned with points. bounds: 3x2 float array of values (rows: X,Y,Z; columns: min,max) defining region in 3D space to generate heightmap in world coordinates. pixel_size: float defining size of each pixel in meters. Returns: heightmap: HxW float array of height (from lower z-bound) in meters. colormap: HxWx3 uint8 array of backprojected color aligned with heightmap. xyzmap: HxWx3 float array of XYZ points in world coordinates. """ width = int(np.round((bounds[0, 1] - bounds[0, 0]) / pixel_size)) height = int(np.round((bounds[1, 1] - bounds[1, 0]) / pixel_size)) heightmap = np.zeros((height, width), dtype=np.float32) colormap = np.zeros((height, width, colors.shape[-1]), dtype=np.uint8) xyzmap = np.zeros((height, width, 3), dtype=np.float32) # Filter out 3D points that are outside of the predefined bounds. ix = (points[Ellipsis, 0] >= bounds[0, 0]) & (points[Ellipsis, 0] < bounds[0, 1]) iy = (points[Ellipsis, 1] >= bounds[1, 0]) & (points[Ellipsis, 1] < bounds[1, 1]) iz = (points[Ellipsis, 2] >= bounds[2, 0]) & (points[Ellipsis, 2] < bounds[2, 1]) valid = ix & iy & iz points = points[valid] colors = colors[valid] # Sort 3D points by z-value, which works with array assignment to simulate # z-buffering for rendering the heightmap image. iz = np.argsort(points[:, -1]) points, colors = points[iz], colors[iz] px = np.int32(np.floor((points[:, 0] - bounds[0, 0]) / pixel_size)) py = np.int32(np.floor((points[:, 1] - bounds[1, 0]) / pixel_size)) px = np.clip(px, 0, width - 1) py = np.clip(py, 0, height - 1) heightmap[py, px] = points[:, 2] - bounds[2, 0] for c in range(colors.shape[-1]): colormap[py, px, c] = colors[:, c] xyzmap[py, px, c] = points[:, c] colormap = colormap[::-1, :, :] # Flip up-down. xv, yv = np.meshgrid(np.linspace(BOUNDS[0, 0], BOUNDS[0, 1], height), np.linspace(BOUNDS[1, 0], BOUNDS[1, 1], width)) xyzmap[:, :, 0] = xv xyzmap[:, :, 1] = yv xyzmap = xyzmap[::-1, :, :] # Flip up-down. heightmap = heightmap[::-1, :] # Flip up-down. return heightmap, colormap, xyzmap def on_top_of(self, obj_a, obj_b): """ check if obj_a is on top of obj_b condition 1: l2 distance on xy plane is less than a threshold condition 2: obj_a is higher than obj_b """ obj_a_pos = self.get_obj_pos(obj_a) obj_b_pos = self.get_obj_pos(obj_b) xy_dist = np.linalg.norm(obj_a_pos[:2] - obj_b_pos[:2]) if obj_b in CORNER_POS: is_near = xy_dist < 0.06 return is_near elif 'bowl' in obj_b: is_near = xy_dist < 0.06 is_higher = obj_a_pos[2] > obj_b_pos[2] return is_near and is_higher else: is_near = xy_dist < 0.04 is_higher = obj_a_pos[2] > obj_b_pos[2] return is_near and is_higher def get_obj_id(self, obj_name): try: if obj_name in self.obj_name_to_id: obj_id = self.obj_name_to_id[obj_name] else: obj_name = obj_name.replace('circle', 'bowl').replace('square', 'block').replace('small', '').strip() obj_id = self.obj_name_to_id[obj_name] return obj_id except: raise Exception('Object name "{}" not found'.format(obj_name)) def get_obj_pos(self, obj_name): obj_name = obj_name.replace('the', '').replace('_', ' ').strip() if obj_name in CORNER_POS: position = np.float32(np.array(CORNER_POS[obj_name])) else: pick_id = self.get_obj_id(obj_name) pose = self._p.getBasePositionAndOrientation(pick_id) position = np.float32(pose[0]) return position def get_bounding_box(self, obj_name): obj_id = self.get_obj_id(obj_name) return self._p.getAABB(obj_id) class LMP_wrapper(): def __init__(self, env, cfg, render=False): self.env = env self._cfg = cfg self.object_names = list(self._cfg['env']['init_objs']) self._min_xy = np.array(self._cfg['env']['coords']['bottom_left']) self._max_xy = np.array(self._cfg['env']['coords']['top_right']) self._range_xy = self._max_xy - self._min_xy self._table_z = self._cfg['env']['coords']['table_z'] self.render = render def is_obj_visible(self, obj_name): return obj_name in self.object_names def get_obj_names(self): return self.object_names[::] def denormalize_xy(self, pos_normalized): return pos_normalized * self._range_xy + self._min_xy def get_corner_positions(self): unit_square = box(0, 0, 1, 1) normalized_corners = np.array(list(unit_square.exterior.coords))[:4] corners = np.array(([self.denormalize_xy(corner) for corner in normalized_corners])) return corners def get_side_positions(self): side_xs = np.array([0, 0.5, 0.5, 1]) side_ys = np.array([0.5, 0, 1, 0.5]) normalized_side_positions = np.c_[side_xs, side_ys] side_positions = np.array(([self.denormalize_xy(corner) for corner in normalized_side_positions])) return side_positions def get_obj_pos(self, obj_name): # return the xy position of the object in robot base frame return self.env.get_obj_pos(obj_name)[:2] def get_obj_position_np(self, obj_name): return self.get_pos(obj_name) def get_bbox(self, obj_name): # return the axis-aligned object bounding box in robot base frame (not in pixels) # the format is (min_x, min_y, max_x, max_y) bbox = self.env.get_bounding_box(obj_name) return bbox def get_color(self, obj_name): for color, rgb in COLORS.items(): if color in obj_name: return rgb def pick_place(self, pick_pos, place_pos): pick_pos_xyz = np.r_[pick_pos, [self._table_z]] place_pos_xyz = np.r_[place_pos, [self._table_z]] pass def put_first_on_second(self, arg1, arg2): # put the object with obj_name on top of target # target can either be another object name, or it can be an x-y position in robot base frame pick_pos = self.get_obj_pos(arg1) if isinstance(arg1, str) else arg1 place_pos = self.get_obj_pos(arg2) if isinstance(arg2, str) else arg2 self.env.step(action={'pick': pick_pos, 'place': place_pos}) def get_robot_pos(self): # return robot end-effector xy position in robot base frame return self.env.get_ee_pos() def goto_pos(self, position_xy): # move the robot end-effector to the desired xy position while maintaining same z ee_xyz = self.env.get_ee_pos() position_xyz = np.concatenate([position_xy, ee_xyz[-1]]) while np.linalg.norm(position_xyz - ee_xyz) > 0.01: self.env.movep(position_xyz) self.env.step_sim_and_render() ee_xyz = self.env.get_ee_pos() def follow_traj(self, traj): for pos in traj: self.goto_pos(pos) def get_corner_positions(self): normalized_corners = np.array([ [0, 1], [1, 1], [0, 0], [1, 0] ]) return np.array(([self.denormalize_xy(corner) for corner in normalized_corners])) def get_side_positions(self): normalized_sides = np.array([ [0.5, 1], [1, 0.5], [0.5, 0], [0, 0.5] ]) return np.array(([self.denormalize_xy(side) for side in normalized_sides])) def get_corner_name(self, pos): corner_positions = self.get_corner_positions() corner_idx = np.argmin(np.linalg.norm(corner_positions - pos, axis=1)) return ['top left corner', 'top right corner', 'bottom left corner', 'botom right corner'][corner_idx] def get_side_name(self, pos): side_positions = self.get_side_positions() side_idx = np.argmin(np.linalg.norm(side_positions - pos, axis=1)) return ['top side', 'right side', 'bottom side', 'left side'][side_idx] class DummyClass: def __getattr__(self, attr): return None class VoxPoserWrapper(): def __init__(self, env, cfg, render=False): self.env = env self._cfg = cfg def parse_query_obj(self, *args, **kwargs): print("`parse_query_obj` called.\n") return DummyClass() def get_empty_affordance_map(self, *args, **kwargs): print("`get_empty_affordance_map` called.\n") return DummyClass() def set_voxel_by_radius(self, *args, **kwargs): print("`set_voxel_by_radius` called.\n") def cm2index(self, *args, **kwargs): print("`cm2index` called.\n") def detect(self, *args, **kwargs): print("`detect` called.\n") return DummyClass() def get_empty_avoidance_map(self, *args, **kwargs): print("`get_empty_avoidance_map` called.\n") return DummyClass() def get_empty_gripper_map(self, *args, **kwargs): print("`get_empty_gripper_map` called.\n") return DummyClass() def get_empty_rotation_map(self, *args, **kwargs): print("`get_empty_rotation_map` called.\n") return DummyClass() def vec2quat(self, *args, **kwargs): print("`vec2quat` called.\n") return DummyClass() def euler2quat(self, *args, **kwargs): print("`euler2quat` called.\n") return DummyClass() def quat2euler(self, *args, **kwargs): print("`quat2euler` called.\n") return DummyClass() def qmult(self, *args, **kwargs): print("`qmult` called.\n") return DummyClass() def qinverse(self, *args, **kwargs): print("`qinverse` called.\n") return DummyClass() def get_empty_velocity_map(self, *args, **kwargs): print("`get_empty_velocity_map` called.\n") return DummyClass() def execute(self, *args, **kwargs): print("`execute` called.\n") def reset_to_default_pose(self, *args, **kwargs): print("`reset_to_default_pose` called.\n") class AgibotWrapper(): def __init__(self, env, cfg, render=False): self.env = env self._cfg = cfg def track(self, *args, **kwargs): print("`track` called.") print("detect") print("establish tracking") return DummyClass() def get_target_pose(self, *args, **kwargs): print("`get_target_pose` called.\n") return DummyClass() def get_operation(self, *args, **kwargs): print("`get_operation` called.\n") return DummyClass() def execute(self, movable, *args, target_pose=None, operation=None, **kwargs) -> bool: print("`execute` called.") while not self.lock_object(target_pose): pass print("locked\n") if not self.observe_object_if_moving(movable): print("object is moving, execution exit.\n") return False if target_pose is not None: contact_ret = self.contact_object(target_pose) print("contact_object:", "success" if contact_ret else "failed") if not contact_ret: print("execution failed\n") return False if operation is not None: operation_ret = self.operate_object(operation) print("operate_object:", "success" if operation_ret else "failed") if not operation_ret: print("execution failed\n") return False print("execution done\n") return True def lock_object(self, *args, **kwargs): print("`lock_object` called.\n") sleep(1.0) return True def observe_object_if_moving(self, *args, **kwargs): return random.choice([True, True, False]) def contact_object(self, *args, **kwargs): print("`contact_object` called.") return random.choice([True, True, False]) def operate_object(self, *args, **kwargs): print("`operate_object` called.") return random.choice([True, True, False]) def reset_to_default_pose(self, *args, **kwargs): print("`reset_to_default_pose` called.\n")