Eralien's picture
Fix: no proxy requirement for hf deployment
460c3f9
raw
history blame
6.99 kB
import openai
import numpy as np
from tempfile import NamedTemporaryFile
import copy
import shapely
from shapely.geometry import *
from shapely.affinity import *
from omegaconf import OmegaConf
from moviepy.editor import ImageSequenceClip
import gradio as gr
from lmp import LMP, LMPFGen
from sim import PickPlaceEnv, LMP_wrapper, VoxPoserWrapper, AgibotWrapper
from consts import ALL_BLOCKS, ALL_BOWLS
from md_logger import MarkdownLogger
from utils import get_geoip
class DemoRunner:
def __init__(self, config_file: str = 'cfg.yaml'):
self._cfg = OmegaConf.to_container(OmegaConf.load(config_file), resolve=True)
self._env = None
self._md_logger = MarkdownLogger()
def make_LMP(self, env, cfg_choice):
# LMP env wrapper
cfg = copy.deepcopy(self._cfg)
# cfg['env'] = {
# 'init_objs': list(env.obj_name_to_id.keys()),
# 'coords': cfg['tabletop_coords']
# }
if cfg_choice == "voxposer":
LMP_env = VoxPoserWrapper(env, cfg)
elif cfg_choice == "agibot":
LMP_env = AgibotWrapper(env, cfg)
# creating APIs that the LMPs can interact with
fixed_vars = {
'np': np
}
fixed_vars.update({
name: eval(name)
for name in shapely.geometry.__all__ + shapely.affinity.__all__
})
variable_vars = {
k: getattr(LMP_env, k)
for k in dir(LMP_env)
if not k.startswith("__") and callable(getattr(LMP_env, k))
}
variable_vars['say'] = lambda msg: self._md_logger.log_text(f'Robot says: "{msg}"')
# creating the function-generating LMP
lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars, self._md_logger)
# creating other low-level LMPs
variable_vars.update({
k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars, self._md_logger)
for k in cfg['lmps'].keys() if k != 'fgen'
})
# creating the LMP that deals w/ high-level language commands
lmp_planner = LMP(
'planner', cfg['lmps']['planner'], lmp_fgen, fixed_vars, variable_vars, self._md_logger
)
return lmp_planner
def setup(self, api_key, n_blocks, n_bowls, proxy, cfg_choice):
openai.api_key = api_key
# self._env = PickPlaceEnv(render=True, high_res=True, high_frame_rate=False)
# list_idxs = np.random.choice(len(ALL_BLOCKS), size=max(n_blocks, n_bowls), replace=False)
# block_list = [ALL_BLOCKS[i] for i in list_idxs[:n_blocks]]
# bowl_list = [ALL_BOWLS[i] for i in list_idxs[:n_bowls]]
# obj_list = block_list + bowl_list
# self._env.reset(obj_list)
self._lmp_planner = self.make_LMP(self._env, cfg_choice)
# info = '### Available Objects: \n- ' + '\n- '.join(obj_list)
# img = self._env.get_camera_image()
info, img = None, None
return info, img
def run(self, instruction):
# if self._env is None:
# return 'Please run setup first!', None, None
# self._env.cache_video = []
self._md_logger.clear()
self._lmp_planner(instruction)
# try:
# self._lmp_planner(instruction, f'objects = {self._env.object_list}')
# except Exception as e:
# return f'Error: {e}', None, None
# video_file_name = None
# if self._env.cache_video:
# rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
# video_file_name = NamedTemporaryFile(suffix='.mp4').name
# rendered_clip.write_videofile(video_file_name, fps=25)
video_file_name = None
# return self._md_logger.get_log(), self._env.get_camera_image(), video_file_name
return self._md_logger.get_log(), None, video_file_name
def setup(api_key, n_blocks, n_bowls, proxy_addr, cfg_choice):
if not api_key:
return 'Please enter your OpenAI API key!', None, None
if n_blocks + n_bowls == 0:
return 'Please select at least one object!', None, None
if proxy_addr is not None and "http://" in proxy_addr:
openai.proxy = proxy_addr
elif proxy_addr is not None:
openai.proxy = f"http://{proxy_addr}"
# ip_status, ip_info = get_geoip(openai.proxy)
# if ip_status == -1:
# return ip_info, None, None
# elif ip_status == 0:
# pressed_key = input('Continue with current ip location? (y/n)')
# if pressed_key.lower() != 'y':
# return ip_info, None, None
# else:
# print(f'{ip_info} IP location check passed.')
if cfg_choice == "voxposer":
cfg_file = 'cfg_voxposer.yaml'
elif cfg_choice == "agibot":
cfg_file = 'cfg_agibot.yaml'
demo_runner = DemoRunner(cfg_file)
info, img = demo_runner.setup(api_key, n_blocks, n_bowls, proxy_addr, cfg_choice)
return info, img, demo_runner
def run(instruction, demo_runner):
if demo_runner is None:
return 'Please run setup first!', None, None
return demo_runner.run(instruction)
if __name__ == '__main__':
with open('README.md', 'r') as f:
for _ in range(12):
next(f)
readme_text = f.read()
with gr.Blocks() as demo:
state = gr.State(None)
# gr.Markdown(readme_text)
gr.Markdown('# Interactive Demo')
with gr.Row():
with gr.Column():
with gr.Column():
inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1)
inp_proxy_addr = gr.Textbox(label='Your local proxy address', lines=1)
inp_cfg = gr.Dropdown(label='Configuration', choices=['voxposer', 'agibot'])
with gr.Row():
inp_n_blocks = gr.Slider(label='Number of Blocks', minimum=0, maximum=4, value=3, step=1)
inp_n_bowls = gr.Slider(label='Number of Bowls', minimum=0, maximum=4, value=3, step=1)
btn_setup = gr.Button("Setup/Reset Simulation")
info_setup = gr.Markdown(label='Setup Info')
with gr.Column():
img_setup = gr.Image(label='Current Simulation')
with gr.Row():
with gr.Column():
inp_instruction = gr.Textbox(label='Instruction', lines=1)
btn_run = gr.Button("Run (this may take 30+ seconds)")
info_run = gr.Markdown(label='Generated Code')
with gr.Column():
video_run = gr.Video(label='Video of Last Instruction')
btn_setup.click(
setup,
inputs=[inp_api_key, inp_n_blocks, inp_n_bowls, inp_proxy_addr, inp_cfg],
outputs=[info_setup, img_setup, state]
)
btn_run.click(
run,
inputs=[inp_instruction, state],
outputs=[info_run, img_setup, video_run]
)
demo.launch()