Eralien's picture
Fix: try to remove proxy
3f1544e
raw
history blame
8.27 kB
from time import sleep
import ast
import astunparse
import openai
from openai.error import RateLimitError, APIConnectionError
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter
from utils import retrieve_proxy, chat_completion_request, generate_messages
class LMP:
def __init__(self, name, cfg, lmp_fgen, fixed_vars, variable_vars, md_logger):
self._name = name
self._cfg = cfg
self._md_logger = md_logger
with open(self._cfg['prompt_path'], 'r') as f:
self._base_prompt = f.read()
self._stop_tokens = list(self._cfg['stop'])
self._lmp_fgen = lmp_fgen
self._fixed_vars = fixed_vars
self._variable_vars = variable_vars
self.exec_hist = ''
def clear_exec_hist(self):
self.exec_hist = ''
def build_prompt(self, query, context=''):
if len(self._variable_vars) > 0:
variable_vars_imports_str = f"from utils import {', '.join(self._variable_vars.keys())}"
else:
variable_vars_imports_str = ''
prompt = self._base_prompt.replace('{variable_vars_imports}', variable_vars_imports_str)
if self._cfg['maintain_session']:
prompt += f'\n{self.exec_hist}'
if context != '':
prompt += f'\n{context}'
use_query = f'{self._cfg["query_prefix"]}{query}{self._cfg["query_suffix"]}'
prompt += f'\n{use_query}'
return prompt, use_query
def __call__(self, query, context='', **kwargs):
prompt, use_query = self.build_prompt(query, context=context)
response = chat_completion_request(
generate_messages(prompt),
# stop=self._stop_tokens,
temperature=self._cfg['temperature'],
model=self._cfg['model'],
max_tokens=self._cfg['max_tokens'],
# proxy=openai.proxy,
)
code_str = response.json()["choices"][0]["message"]['content']
if self._cfg['include_context'] and context != '':
to_exec = f'{context}\n{code_str}'
to_log = f'{context}\n{use_query}\n{code_str}'
else:
to_exec = code_str
to_log = f'{use_query}\n{to_exec}'
to_log_pretty = highlight(to_log, PythonLexer(), TerminalFormatter())
print(f'LMP {self._name} generated code:\n{to_log_pretty}')
self._md_logger.log_text(f'LMP {self._name} Generated Code:')
self._md_logger.log_code(to_log)
new_fs = self._lmp_fgen.create_new_fs_from_code(code_str)
self._variable_vars.update(new_fs)
gvars = merge_dicts([self._fixed_vars, self._variable_vars])
lvars = kwargs
if not self._cfg['debug_mode']:
exec_safe(to_exec, gvars, lvars)
self.exec_hist += f'\n{to_exec}'
if self._cfg['maintain_session']:
self._variable_vars.update(lvars)
if self._cfg['has_return'] and not self._cfg['debug_mode']:
return lvars[self._cfg['return_val_name']]
class LMPFGen:
def __init__(self, cfg, fixed_vars, variable_vars, md_logger):
self._cfg = cfg
self._stop_tokens = list(self._cfg['stop'])
self._fixed_vars = fixed_vars
self._variable_vars = variable_vars
self._md_logger = md_logger
with open(self._cfg['prompt_path'], 'r') as f:
self._base_prompt = f.read()
def create_f_from_sig(self, f_name, f_sig, other_vars=None, fix_bugs=False, return_src=False):
print(f'Creating function: {f_sig}')
use_query = f'{self._cfg["query_prefix"]}{f_sig}{self._cfg["query_suffix"]}'
prompt = f'{self._base_prompt}\n{use_query}'
response = chat_completion_request(
generate_messages(prompt),
temperature=self._cfg['temperature'],
model=self._cfg['model'],
max_tokens=self._cfg['max_tokens'],
# proxy=openai.proxy,
)
f_src = response.json()["choices"][0]["message"]['content']
if fix_bugs:
f_src = openai.Edit.create(
model='code-davinci-edit-001',
input='# ' + f_src,
temperature=0,
instruction='Fix the bug if there is one. Improve readability. Keep same inputs and outputs. Only small changes. No comments.',
)['choices'][0]['text'].strip()
if other_vars is None:
other_vars = {}
gvars = merge_dicts([self._fixed_vars, self._variable_vars, other_vars])
lvars = {}
exec_safe(f_src, gvars, lvars)
f = lvars[f_name]
to_print = f'{use_query}\n{f_src}'
to_print_pretty = highlight(to_print, PythonLexer(), TerminalFormatter())
print(f'LMPFGen generated code:\n{to_print_pretty}')
self._md_logger.log_text('Generated Function:')
self._md_logger.log_code(to_print)
if return_src:
return f, f_src
return f
def create_new_fs_from_code(self, code_str, other_vars=None, fix_bugs=False, return_src=False):
fs, f_assigns = {}, {}
f_parser = FunctionParser(fs, f_assigns)
f_parser.visit(ast.parse(code_str))
for f_name, f_assign in f_assigns.items():
if f_name in fs:
fs[f_name] = f_assign
if other_vars is None:
other_vars = {}
new_fs = {}
srcs = {}
for f_name, f_sig in fs.items():
all_vars = merge_dicts([self._fixed_vars, self._variable_vars, new_fs, other_vars])
if not var_exists(f_name, all_vars):
f, f_src = self.create_f_from_sig(f_name, f_sig, new_fs, fix_bugs=fix_bugs, return_src=True)
# recursively define child_fs in the function body if needed
f_def_body = astunparse.unparse(ast.parse(f_src).body[0].body)
child_fs, child_f_srcs = self.create_new_fs_from_code(
f_def_body, other_vars=all_vars, fix_bugs=fix_bugs, return_src=True
)
if len(child_fs) > 0:
new_fs.update(child_fs)
srcs.update(child_f_srcs)
# redefine parent f so newly created child_fs are in scope
gvars = merge_dicts([self._fixed_vars, self._variable_vars, new_fs, other_vars])
lvars = {}
exec_safe(f_src, gvars, lvars)
f = lvars[f_name]
new_fs[f_name], srcs[f_name] = f, f_src
if return_src:
return new_fs, srcs
return new_fs
class FunctionParser(ast.NodeTransformer):
def __init__(self, fs, f_assigns):
super().__init__()
self._fs = fs
self._f_assigns = f_assigns
def visit_Call(self, node):
self.generic_visit(node)
if isinstance(node.func, ast.Name):
f_sig = astunparse.unparse(node).strip()
f_name = astunparse.unparse(node.func).strip()
self._fs[f_name] = f_sig
return node
def visit_Assign(self, node):
self.generic_visit(node)
if isinstance(node.value, ast.Call):
assign_str = astunparse.unparse(node).strip()
f_name = astunparse.unparse(node.value.func).strip()
self._f_assigns[f_name] = assign_str
return node
def var_exists(name, all_vars):
try:
eval(name, all_vars)
except:
exists = False
else:
exists = True
return exists
def merge_dicts(dicts):
return {
k : v
for d in dicts
for k, v in d.items()
}
import traceback
def exec_safe(code_str, gvars=None, lvars=None):
banned_phrases = ['import', '__']
for phrase in banned_phrases:
assert phrase not in code_str
if gvars is None:
gvars = {}
if lvars is None:
lvars = {}
empty_fn = lambda *args, **kwargs: None
custom_gvars = merge_dicts([
gvars,
{'exec': empty_fn, 'eval': empty_fn}
])
try:
exec(code_str, custom_gvars, lvars)
except Exception as e:
traceback.print_exc()
# exec(code_str, custom_gvars, lvars)