File size: 6,778 Bytes
1ec9b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1544e
1ec9b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1544e
 
1ec9b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1544e
1ec9b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1544e
1ec9b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1544e
1ec9b78
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import openai
import numpy as np
from tempfile import NamedTemporaryFile
import copy
import shapely
from shapely.geometry import *
from shapely.affinity import *
from omegaconf import OmegaConf
from moviepy.editor import ImageSequenceClip
import gradio as gr

from lmp import LMP, LMPFGen
from sim import PickPlaceEnv, LMP_wrapper, VoxPoserWrapper, AgibotWrapper
from consts import ALL_BLOCKS, ALL_BOWLS
from md_logger import MarkdownLogger
from utils import get_geoip

class DemoRunner:

    def __init__(self, config_file: str = 'cfg.yaml'):
        self._cfg = OmegaConf.to_container(OmegaConf.load(config_file), resolve=True)
        self._env = None
        self._md_logger = MarkdownLogger()

    def make_LMP(self, env, cfg_choice):
        # LMP env wrapper
        cfg = copy.deepcopy(self._cfg)
        # cfg['env'] = {
        #     'init_objs': list(env.obj_name_to_id.keys()),
        #     'coords': cfg['tabletop_coords']
        # }

        if cfg_choice == "voxposer":
            LMP_env = VoxPoserWrapper(env, cfg)
        elif cfg_choice == "agibot":
            LMP_env = AgibotWrapper(env, cfg)

        # creating APIs that the LMPs can interact with
        fixed_vars = {
            'np': np
        }
        fixed_vars.update({
            name: eval(name)
            for name in shapely.geometry.__all__ + shapely.affinity.__all__
        })

        variable_vars = {
            k: getattr(LMP_env, k)
            for k in dir(LMP_env)
            if not k.startswith("__") and callable(getattr(LMP_env, k))
        }
        variable_vars['say'] = lambda msg: self._md_logger.log_text(f'Robot says: "{msg}"')

        # creating the function-generating LMP
        lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars, self._md_logger)

        # creating other low-level LMPs
        variable_vars.update({
            k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars, self._md_logger)
            for k in cfg['lmps'].keys() if k != 'fgen'
        })

        # creating the LMP that deals w/ high-level language commands
        lmp_planner = LMP(
            'planner', cfg['lmps']['planner'], lmp_fgen, fixed_vars, variable_vars, self._md_logger
        )

        return lmp_planner

    def setup(self, api_key, n_blocks, n_bowls, cfg_choice):
        openai.api_key = api_key

        # self._env = PickPlaceEnv(render=True, high_res=True, high_frame_rate=False)
        # list_idxs = np.random.choice(len(ALL_BLOCKS), size=max(n_blocks, n_bowls), replace=False)
        # block_list = [ALL_BLOCKS[i] for i in list_idxs[:n_blocks]]
        # bowl_list = [ALL_BOWLS[i] for i in list_idxs[:n_bowls]]
        # obj_list = block_list + bowl_list
        # self._env.reset(obj_list)

        self._lmp_planner = self.make_LMP(self._env, cfg_choice)

        # info = '### Available Objects: \n- ' + '\n- '.join(obj_list)
        # img = self._env.get_camera_image()

        info, img = None, None

        return info, img

    def run(self, instruction):
        # if self._env is None:
        #     return 'Please run setup first!', None, None

        # self._env.cache_video = []
        self._md_logger.clear()

        self._lmp_planner(instruction)

        # try:
        #     self._lmp_planner(instruction, f'objects = {self._env.object_list}')
        # except Exception as e:
        #     return f'Error: {e}', None, None

        # video_file_name = None
        # if self._env.cache_video:
        #     rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
        #     video_file_name = NamedTemporaryFile(suffix='.mp4').name
        #     rendered_clip.write_videofile(video_file_name, fps=25)
        video_file_name = None

        # return self._md_logger.get_log(), self._env.get_camera_image(), video_file_name

        return self._md_logger.get_log(), None, video_file_name


def setup(api_key, n_blocks, n_bowls, cfg_choice):
    
    if not api_key:
        return 'Please enter your OpenAI API key!', None, None

    if n_blocks + n_bowls == 0:
        return 'Please select at least one object!', None, None

    # ip_status, ip_info = get_geoip(openai.proxy)
    # if ip_status == -1:
    #     return ip_info, None, None
    # elif ip_status == 0:
    #     pressed_key = input('Continue with current ip location? (y/n)')
    #     if pressed_key.lower() != 'y':
    #         return ip_info, None, None
    # else:
    #     print(f'{ip_info} IP location check passed.')

    if cfg_choice == "voxposer":
        cfg_file = 'cfg_voxposer.yaml'
    elif cfg_choice == "agibot":
        cfg_file = 'cfg_agibot.yaml'

    demo_runner = DemoRunner(cfg_file)

    info, img = demo_runner.setup(api_key, n_blocks, n_bowls, cfg_choice)
    return info, img, demo_runner


def run(instruction, demo_runner):
    if demo_runner is None:
        return 'Please run setup first!', None, None
    return demo_runner.run(instruction)


if __name__ == '__main__':
    with open('README.md', 'r') as f:
        for _ in range(12):
            next(f)
        readme_text = f.read()

    with gr.Blocks() as demo:
        state = gr.State(None)

        # gr.Markdown(readme_text)
        gr.Markdown('# Interactive Demo')
        with gr.Row():
            with gr.Column():
                with gr.Column():
                    inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1)
                    # inp_proxy_addr = gr.Textbox(label='Your local proxy address', lines=1)
                    inp_cfg = gr.Dropdown(label='Configuration', choices=['voxposer', 'agibot'])
                with gr.Row():
                    inp_n_blocks = gr.Slider(label='Number of Blocks', minimum=0, maximum=4, value=3, step=1)
                    inp_n_bowls = gr.Slider(label='Number of Bowls', minimum=0, maximum=4, value=3, step=1)

                btn_setup = gr.Button("Setup/Reset Simulation")
                info_setup = gr.Markdown(label='Setup Info')
            with gr.Column():
                img_setup = gr.Image(label='Current Simulation')

        with gr.Row():
            with gr.Column():
                inp_instruction = gr.Textbox(label='Instruction', lines=1)
                btn_run = gr.Button("Run (this may take 30+ seconds)")
                info_run = gr.Markdown(label='Generated Code')
            with gr.Column():
                video_run = gr.Video(label='Video of Last Instruction')

        btn_setup.click(
            setup,
            inputs=[inp_api_key, inp_n_blocks, inp_n_bowls, inp_cfg],
            outputs=[info_setup, img_setup, state]
        )
        btn_run.click(
            run,
            inputs=[inp_instruction, state],
            outputs=[info_run, img_setup, video_run]
        )

    demo.launch()