Enoch1359 commited on
Commit
e9d2050
·
verified ·
1 Parent(s): c0ed4a7

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +8 -13
  2. app.py +64 -0
  3. requirements.txt +3 -3
Dockerfile CHANGED
@@ -1,21 +1,16 @@
 
1
  FROM python:3.9-slim
2
 
 
3
  WORKDIR /app
4
 
5
- RUN apt-get update && apt-get install -y \
6
- build-essential \
7
- curl \
8
- software-properties-common \
9
- git \
10
- && rm -rf /var/lib/apt/lists/*
11
-
12
- COPY requirements.txt ./
13
- COPY src/ ./src/
14
 
 
15
  RUN pip3 install -r requirements.txt
16
 
17
- EXPOSE 8501
18
-
19
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
20
 
21
- ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
1
+ # Use a minimal base image with Python 3.9 installed
2
  FROM python:3.9-slim
3
 
4
+ # Set the working directory inside the container to /app
5
  WORKDIR /app
6
 
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
+ COPY . .
 
 
 
 
 
 
 
9
 
10
+ # Install Python dependencies listed in requirements.txt
11
  RUN pip3 install -r requirements.txt
12
 
13
+ # Define the command to run the Streamlit app on port 8501 and make it accessible externally
14
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
 
15
 
16
+ # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import requests
3
+ import streamlit as st
4
+
5
+ st.title('SuperKart Sale Prediction')
6
+
7
+ # Inputs for prediction
8
+ Product_Weight = st.number_input('Product_Weight', value=15.46)
9
+ Product_Sugar_Content = st.selectbox('Product_Sugar_Content', ['No Sugar', 'Low Sugar', 'Regular', 'reg'], index=0)
10
+ Product_Allocated_Area = st.number_input('Product_Allocated_Area', value=0.026)
11
+ Product_Type = st.selectbox('Product_Type', ['Household', 'Soft Drinks', 'Fruits and Vegetables',
12
+ 'Baking Goods', 'Meat', 'Dairy', 'Canned', 'Snack Foods',
13
+ 'Frozen Foods', 'Health and Hygiene', 'Breads', 'Hard Drinks',
14
+ 'Others', 'Starchy Foods', 'Breakfast', 'Seafood'], index=0)
15
+ Product_MRP = st.number_input('Product_MRP', value=171.83)
16
+ Store_Id = st.selectbox('Store_Id', ['OUT001', 'OUT003', 'OUT004', 'OUT002'], index=0)
17
+ Store_Establishment_Year = st.selectbox('Store_Establishment_Year',[1987,1998,1999,2009], index=0)
18
+ Store_Size = st.selectbox('Store_Size', ['Small', 'Medium', 'High'], index=0)
19
+ Store_Location_City_Type = st.selectbox('Store_Location_City_Type', ['Tier 1', 'Tier 2', 'Tier 3'], index=1)
20
+ Store_Type = st.selectbox('Store_Type', ['Supermarket Type1', 'Departmental Store', 'Supermarket Type2', 'Food Mart'], index=0)
21
+
22
+
23
+ # Create input data as DataFrame
24
+ input_data = pd.DataFrame([{
25
+ 'Product_Weight': Product_Weight,
26
+ 'Product_Sugar_Content': Product_Sugar_Content,
27
+ 'Product_Allocated_Area': Product_Allocated_Area,
28
+ 'Product_Type': Product_Type,
29
+ 'Product_MRP': Product_MRP,
30
+ 'Store_Id': Store_Id,
31
+ 'Store_Establishment_Year': Store_Establishment_Year,
32
+ 'Store_Size': Store_Size,
33
+ 'Store_Location_City_Type': Store_Location_City_Type,
34
+ 'Store_Type': Store_Type,
35
+
36
+ }])
37
+
38
+ # Single prediction
39
+ if st.button('Predict'):
40
+ response = requests.post(
41
+ 'https://enoch1359-back-end-files.hf.space/v1/spkart_single',
42
+ json=input_data.to_dict(orient='records')[0]
43
+ )
44
+ if response.status_code == 200:
45
+ prediction = response.json()
46
+ st.success(f"Predicted Sale: {prediction['Sale']}")
47
+ else:
48
+ st.error(f"Error making prediction: {response.text}")
49
+
50
+ # Batch prediction
51
+ st.subheader('Batch Prediction')
52
+ uploaded_file = st.file_uploader('Upload a CSV file', type=['csv'])
53
+ if uploaded_file is not None:
54
+ if st.button('Predict Batch'):
55
+ response = requests.post(
56
+ 'https://enoch1359-back-end-files.hf.space/v1/spkart_batch',
57
+ files={'file': uploaded_file}
58
+ )
59
+ if response.status_code == 200:
60
+ predictions = response.json()
61
+ st.success("Batch predictions completed!")
62
+ st.json(predictions)
63
+ else:
64
+ st.error(f"Error making batch prediction: {response.text}")
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- altair
2
- pandas
3
- streamlit
 
1
+ pandas==2.2.2
2
+ requests==2.28.1
3
+ streamlit==1.43.2