Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +8 -13
- app.py +64 -0
- requirements.txt +3 -3
Dockerfile
CHANGED
@@ -1,21 +1,16 @@
|
|
|
|
1 |
FROM python:3.9-slim
|
2 |
|
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
curl \
|
8 |
-
software-properties-common \
|
9 |
-
git \
|
10 |
-
&& rm -rf /var/lib/apt/lists/*
|
11 |
-
|
12 |
-
COPY requirements.txt ./
|
13 |
-
COPY src/ ./src/
|
14 |
|
|
|
15 |
RUN pip3 install -r requirements.txt
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
20 |
|
21 |
-
|
|
|
1 |
+
# Use a minimal base image with Python 3.9 installed
|
2 |
FROM python:3.9-slim
|
3 |
|
4 |
+
# Set the working directory inside the container to /app
|
5 |
WORKDIR /app
|
6 |
|
7 |
+
# Copy all files from the current directory on the host to the container's /app directory
|
8 |
+
COPY . .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Install Python dependencies listed in requirements.txt
|
11 |
RUN pip3 install -r requirements.txt
|
12 |
|
13 |
+
# Define the command to run the Streamlit app on port 8501 and make it accessible externally
|
14 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
|
|
15 |
|
16 |
+
# NOTE: Disable XSRF protection for easier external access in order to make batch predictions
|
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import requests
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
st.title('SuperKart Sale Prediction')
|
6 |
+
|
7 |
+
# Inputs for prediction
|
8 |
+
Product_Weight = st.number_input('Product_Weight', value=15.46)
|
9 |
+
Product_Sugar_Content = st.selectbox('Product_Sugar_Content', ['No Sugar', 'Low Sugar', 'Regular', 'reg'], index=0)
|
10 |
+
Product_Allocated_Area = st.number_input('Product_Allocated_Area', value=0.026)
|
11 |
+
Product_Type = st.selectbox('Product_Type', ['Household', 'Soft Drinks', 'Fruits and Vegetables',
|
12 |
+
'Baking Goods', 'Meat', 'Dairy', 'Canned', 'Snack Foods',
|
13 |
+
'Frozen Foods', 'Health and Hygiene', 'Breads', 'Hard Drinks',
|
14 |
+
'Others', 'Starchy Foods', 'Breakfast', 'Seafood'], index=0)
|
15 |
+
Product_MRP = st.number_input('Product_MRP', value=171.83)
|
16 |
+
Store_Id = st.selectbox('Store_Id', ['OUT001', 'OUT003', 'OUT004', 'OUT002'], index=0)
|
17 |
+
Store_Establishment_Year = st.selectbox('Store_Establishment_Year',[1987,1998,1999,2009], index=0)
|
18 |
+
Store_Size = st.selectbox('Store_Size', ['Small', 'Medium', 'High'], index=0)
|
19 |
+
Store_Location_City_Type = st.selectbox('Store_Location_City_Type', ['Tier 1', 'Tier 2', 'Tier 3'], index=1)
|
20 |
+
Store_Type = st.selectbox('Store_Type', ['Supermarket Type1', 'Departmental Store', 'Supermarket Type2', 'Food Mart'], index=0)
|
21 |
+
|
22 |
+
|
23 |
+
# Create input data as DataFrame
|
24 |
+
input_data = pd.DataFrame([{
|
25 |
+
'Product_Weight': Product_Weight,
|
26 |
+
'Product_Sugar_Content': Product_Sugar_Content,
|
27 |
+
'Product_Allocated_Area': Product_Allocated_Area,
|
28 |
+
'Product_Type': Product_Type,
|
29 |
+
'Product_MRP': Product_MRP,
|
30 |
+
'Store_Id': Store_Id,
|
31 |
+
'Store_Establishment_Year': Store_Establishment_Year,
|
32 |
+
'Store_Size': Store_Size,
|
33 |
+
'Store_Location_City_Type': Store_Location_City_Type,
|
34 |
+
'Store_Type': Store_Type,
|
35 |
+
|
36 |
+
}])
|
37 |
+
|
38 |
+
# Single prediction
|
39 |
+
if st.button('Predict'):
|
40 |
+
response = requests.post(
|
41 |
+
'https://enoch1359-back-end-files.hf.space/v1/spkart_single',
|
42 |
+
json=input_data.to_dict(orient='records')[0]
|
43 |
+
)
|
44 |
+
if response.status_code == 200:
|
45 |
+
prediction = response.json()
|
46 |
+
st.success(f"Predicted Sale: {prediction['Sale']}")
|
47 |
+
else:
|
48 |
+
st.error(f"Error making prediction: {response.text}")
|
49 |
+
|
50 |
+
# Batch prediction
|
51 |
+
st.subheader('Batch Prediction')
|
52 |
+
uploaded_file = st.file_uploader('Upload a CSV file', type=['csv'])
|
53 |
+
if uploaded_file is not None:
|
54 |
+
if st.button('Predict Batch'):
|
55 |
+
response = requests.post(
|
56 |
+
'https://enoch1359-back-end-files.hf.space/v1/spkart_batch',
|
57 |
+
files={'file': uploaded_file}
|
58 |
+
)
|
59 |
+
if response.status_code == 200:
|
60 |
+
predictions = response.json()
|
61 |
+
st.success("Batch predictions completed!")
|
62 |
+
st.json(predictions)
|
63 |
+
else:
|
64 |
+
st.error(f"Error making batch prediction: {response.text}")
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
streamlit
|
|
|
1 |
+
pandas==2.2.2
|
2 |
+
requests==2.28.1
|
3 |
+
streamlit==1.43.2
|