import streamlit as st import joblib from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain_community.vectorstores import Chroma from langchain.chains import RetrievalQAWithSourcesChain from langchain_openai import ChatOpenAI from dotenv import load_dotenv import os import time load_dotenv("bookie.env") api_key=os.getenv("OPENAI_API_KEY") api_base=os.getenv("OPENAI_API_BASE") llm=ChatOpenAI(model_name="qwen/qwen3-coder:free",temperature=0.2) em=joblib.load("bai.joblib") mp=st.empty() st.title("Welcome to Bookie 😊😊") st.sidebar.title("give you book in pdf format(digitally generated) and less than 5mb for faster answers😊😊") uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type=["pdf"]) upl=st.sidebar.button("upload") import tempfile if upl and uploaded_file: if uploaded_file.size > 5 * 1024 * 1024: st.sidebar.error("❌ File too large. Please upload files under 5MB.") st.stop() with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: tmp_file.write(uploaded_file.read()) tmp_path = tmp_file.name mp.text("loading doc") loader = PyPDFLoader(tmp_path) docs = loader.load() st.write(len(docs)) mp.text("loading split") tct=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512, chunk_overlap=16) doc=tct.split_documents(docs) st.write(len(doc)) mp.text("loading vector db") vb= Chroma.from_documents(doc,em) r1=vb.as_retriever(search_type="similarity",search_kwargs={"k":4}) mp.text("loading retriever") chain=RetrievalQAWithSourcesChain.from_chain_type(llm=llm,chain_type="map_reduce",retriever=r1) st.session_state.chain=chain mp.text("loading done") time.sleep(3) q=mp.text_input("Ask a question about the document:") qb=st.button("submit") if qb: if "chain" not in st.session_state: st.warning("⚠️ Please upload a document first.") st.stop() else: with st.spinner("Waiting for it...."): result=st.session_state.chain({"question":q},return_only_outputs=True) st.header("Answer") st.subheader(result["answer"])