Enoch1359 commited on
Commit
eaf54e1
Β·
verified Β·
1 Parent(s): 813261c

Update bookie.py

Browse files
Files changed (1) hide show
  1. bookie.py +10 -6
bookie.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import joblib
3
  from langchain_community.document_loaders import PyPDFLoader
@@ -13,7 +14,7 @@ import time
13
  load_dotenv("bookie.env")
14
  api_key=os.getenv("OPENAI_API_KEY")
15
  api_base=os.getenv("OPENAI_API_BASE")
16
- llm=ChatOpenAI(model_name="qwen/qwen3-coder:free",temperature=0.2)
17
  em=joblib.load("bai.joblib")
18
  mp=st.empty()
19
  st.title("Welcome to Bookie 😊😊")
@@ -32,11 +33,11 @@ if upl and uploaded_file:
32
  mp.text("loading doc")
33
  loader = PyPDFLoader(tmp_path)
34
  docs = loader.load()
35
- st.write(len(docs))
36
  mp.text("loading split")
37
  tct=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512, chunk_overlap=16)
38
  doc=tct.split_documents(docs)
39
- st.write(len(doc))
40
  mp.text("loading vector db")
41
  vb= Chroma.from_documents(doc,em)
42
  r1=vb.as_retriever(search_type="similarity",search_kwargs={"k":4})
@@ -56,10 +57,13 @@ if qb:
56
  result=st.session_state.chain({"question":q},return_only_outputs=True)
57
  st.header("Answer")
58
  st.subheader(result["answer"])
59
-
 
 
 
 
 
60
 
61
 
62
-
63
-
64
 
65
 
 
1
+ %%writefile book_searcher/bookie.py
2
  import streamlit as st
3
  import joblib
4
  from langchain_community.document_loaders import PyPDFLoader
 
14
  load_dotenv("bookie.env")
15
  api_key=os.getenv("OPENAI_API_KEY")
16
  api_base=os.getenv("OPENAI_API_BASE")
17
+ llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0.2)
18
  em=joblib.load("bai.joblib")
19
  mp=st.empty()
20
  st.title("Welcome to Bookie 😊😊")
 
33
  mp.text("loading doc")
34
  loader = PyPDFLoader(tmp_path)
35
  docs = loader.load()
36
+ st.write(len(docs))
37
  mp.text("loading split")
38
  tct=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512, chunk_overlap=16)
39
  doc=tct.split_documents(docs)
40
+ st.write(len(doc))
41
  mp.text("loading vector db")
42
  vb= Chroma.from_documents(doc,em)
43
  r1=vb.as_retriever(search_type="similarity",search_kwargs={"k":4})
 
57
  result=st.session_state.chain({"question":q},return_only_outputs=True)
58
  st.header("Answer")
59
  st.subheader(result["answer"])
60
+ sb=st.button("show sources")
61
+ if sb:
62
+ sources = result.get("sources", "")
63
+ st.subheader("Sources")
64
+ for line in sources.split("\n"):
65
+ st.write(line)
66
 
67
 
 
 
68
 
69