Update bookie.py
Browse files
bookie.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import joblib
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
@@ -13,7 +14,7 @@ import time
|
|
13 |
load_dotenv("bookie.env")
|
14 |
api_key=os.getenv("OPENAI_API_KEY")
|
15 |
api_base=os.getenv("OPENAI_API_BASE")
|
16 |
-
llm=ChatOpenAI(model_name="
|
17 |
em=joblib.load("bai.joblib")
|
18 |
mp=st.empty()
|
19 |
st.title("Welcome to Bookie ππ")
|
@@ -32,11 +33,11 @@ if upl and uploaded_file:
|
|
32 |
mp.text("loading doc")
|
33 |
loader = PyPDFLoader(tmp_path)
|
34 |
docs = loader.load()
|
35 |
-
st.write(len(docs))
|
36 |
mp.text("loading split")
|
37 |
tct=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512, chunk_overlap=16)
|
38 |
doc=tct.split_documents(docs)
|
39 |
-
st.write(len(doc))
|
40 |
mp.text("loading vector db")
|
41 |
vb= Chroma.from_documents(doc,em)
|
42 |
r1=vb.as_retriever(search_type="similarity",search_kwargs={"k":4})
|
@@ -56,10 +57,13 @@ if qb:
|
|
56 |
result=st.session_state.chain({"question":q},return_only_outputs=True)
|
57 |
st.header("Answer")
|
58 |
st.subheader(result["answer"])
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
|
|
|
1 |
+
%%writefile book_searcher/bookie.py
|
2 |
import streamlit as st
|
3 |
import joblib
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
14 |
load_dotenv("bookie.env")
|
15 |
api_key=os.getenv("OPENAI_API_KEY")
|
16 |
api_base=os.getenv("OPENAI_API_BASE")
|
17 |
+
llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0.2)
|
18 |
em=joblib.load("bai.joblib")
|
19 |
mp=st.empty()
|
20 |
st.title("Welcome to Bookie ππ")
|
|
|
33 |
mp.text("loading doc")
|
34 |
loader = PyPDFLoader(tmp_path)
|
35 |
docs = loader.load()
|
36 |
+
st.write(len(docs))
|
37 |
mp.text("loading split")
|
38 |
tct=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512, chunk_overlap=16)
|
39 |
doc=tct.split_documents(docs)
|
40 |
+
st.write(len(doc))
|
41 |
mp.text("loading vector db")
|
42 |
vb= Chroma.from_documents(doc,em)
|
43 |
r1=vb.as_retriever(search_type="similarity",search_kwargs={"k":4})
|
|
|
57 |
result=st.session_state.chain({"question":q},return_only_outputs=True)
|
58 |
st.header("Answer")
|
59 |
st.subheader(result["answer"])
|
60 |
+
sb=st.button("show sources")
|
61 |
+
if sb:
|
62 |
+
sources = result.get("sources", "")
|
63 |
+
st.subheader("Sources")
|
64 |
+
for line in sources.split("\n"):
|
65 |
+
st.write(line)
|
66 |
|
67 |
|
|
|
|
|
68 |
|
69 |
|