Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +16 -0
- app.py +41 -0
- model.joblib +3 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set the working directory inside the container
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Copy all files from the current directory to the container's working directory
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
# Install dependencies from the requirements file without using cache to reduce image size
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
# Define the command to start the application using Gunicorn with 4 worker processes
|
13 |
+
# - `-w 4`: Uses 4 worker processes for handling requests
|
14 |
+
# - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
|
15 |
+
# - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
|
16 |
+
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:rental_price_predictor_api"]
|
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from flask import Flask, request, jsonify
|
5 |
+
super_kart_api=Flask("Superkart_price_prediction")
|
6 |
+
model=joblib.load('model.joblib')
|
7 |
+
@super_kart_api.get('/')
|
8 |
+
def home():
|
9 |
+
return "Welcome to SuperKart sales Prediction"
|
10 |
+
@super_kart_api.post('/v1/spkart_single')
|
11 |
+
def sale_pred_single():
|
12 |
+
sale_data=request.get_json()
|
13 |
+
sample={
|
14 |
+
'Product_Weight':sale_data['Product_Weight'],
|
15 |
+
'Product_Sugar_Content':sale_data['Product_Sugar_Content'],
|
16 |
+
'Product_Allocated_Area':sale_data['Product_Allocated_Area'],
|
17 |
+
'Product_Type':sale_data['Product_Type'],
|
18 |
+
'Product_MRP':sale_data['Product_MRP'],
|
19 |
+
'Store_Id':sale_data['Store_Id'],
|
20 |
+
'Store_Size':sale_data['Store_Size'],
|
21 |
+
'Store_Location_City_Type':sale_data['Store_Location_City_Type'],
|
22 |
+
'Store_Type':sale_data['Store_Type'],
|
23 |
+
'Store_age':sale_data['Store_age']
|
24 |
+
}
|
25 |
+
input_data=pd.DataFrame([sample])
|
26 |
+
predicted_sale=model.predict(input_data)[0]
|
27 |
+
response={'Store_Outlet':sample['Store_Id'],"Sale":round(float(predicted_sale), 2)}
|
28 |
+
return jsonify(response)
|
29 |
+
|
30 |
+
@super_kart_api.post('/v1/spkart_batch')
|
31 |
+
def sale_pred_batch():
|
32 |
+
file=request.files['file']
|
33 |
+
input_data=pd.read_csv(file)
|
34 |
+
predicted_sale=model.predict(input_data).tolist()
|
35 |
+
predicted_sales=[round(float(i))for i in predicted_sale]
|
36 |
+
sale_outlets=input_data['Store_Id'].tolist()
|
37 |
+
response=dict(zip(sale_outlets,predicted_sales))
|
38 |
+
return jsonify(response)
|
39 |
+
if __name__=='__main__':
|
40 |
+
super_kart_api.run()
|
41 |
+
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83fc60775cc8ebaad7e3054cb851df466705a3e680632eb6e00f7ddedc7adc29
|
3 |
+
size 47879002
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.2
|
2 |
+
numpy==2.0.2
|
3 |
+
scikit-learn==1.6.1
|
4 |
+
xgboost==2.1.4
|
5 |
+
joblib==1.5.1
|
6 |
+
Werkzeug==3.1.3
|
7 |
+
flask==3.1.1
|
8 |
+
gunicorn==23.0.0
|
9 |
+
requests==2.32.3
|
10 |
+
uvicorn[standard]
|
11 |
+
streamlit==1.46.1
|